Google “Pi is wrong” and have your mind blown. Lots of simple equations based on Pi need an extra factor of 2 in order to balance, since Pi treats diameter as the fundamental property of a circle.

]]>The additive identity, 0. [0 + any number = that number]

The multiplicative identity, 1. [ 1 * any number = that number]

One of the square roots of -1. [i^2 = -1]

The base of the natural logarithm.

The ratio of the circumference of a circle to its diameter.

The written form of Randall’s equation is more complicated than the actual value it represents.

]]>For example, if you memorize π to 31 places (it’s really not that difficult), and you used that number (3.1415926535897932384626433832795) to calculate the circumference of the Milky Way galaxy, you’d be off by about 1/20th of the diameter of a proton.

Just using “How I wish I could enumerate pi” (3.141592) when calculating Earth’s circumference from its diameter, you’d be off by a little more than 7 1/2 meters.

If you used the Katharevousa Greek mnemonic for π, giving you 22 decimal places, for that same calculation, you’d be back down to sub-atomic particle ‘error’ territory:

Ἀεὶ ὁ Θεὸς ὀ Μέγας γεωμετρεῖ,τὸ κύκλου μῆκος ἵνα ὁρίσῃ διαμέτρῳ,παρήγαγεν ἀριθμὸν ἀπέραντον,καὶ ὅν, φεῦ, οὐδέποτε ὅλον θνητοὶ θὰ εὕρωσι

the universe – it works, bitches!

]]>I’ve calculated e*6*8^5 as 6370973.03545089 m

Your “source” gives the mean radius of the earth as 6,371.009 km, which deviates substantially from Randall’s calculation. Given that Randall never lies, he must be using a more accurate reference for his numbers than some crummy wiki. ]]>

Then we could make ironic spin-offs of *that* site, and the eschaton would finally come in the form of a meta-singularity!

How precisely is “mean earth radius” known?

Unfortunately there seems to be no snarky site called “let me Wikipedia that for you” like there is for Google, so I guess I’ll just be your lazyweb for you instead: http://en.wikipedia.org/wiki/Earth_radius

]]>