(They can *act* random though. Pi passes every meaningful test for randomness, except that it’s not in any way random.)

http://i50.tinypic.com/2ahbdk4.jpg ]]>

According to wikipedia, the number has 17,425,170 digits, but the image only uses 17,253,096, which leaves 172,074 digits unaccounted for … I wonder if that couldn’t have been done better. Or maybe he did after all use more than 6 digits per pixel to fill the remaining space?

If I do a prime factor decomposition, I get 6* 3*5*7*17 * 1627 (which appears to be a prime number)

So logically, the dimensions 1785*1627 would seem more appropriate. Unless I just made a mistake… ]]>

http://1.bp.blogspot.com/-ETungHt-fEI/TiKUX_3kDjI/AAAAAAAAEos/J1IbauV9fqM/s1600/1961+Abstract+Painting+No.+4.jpg ]]>

But if you’re curious about how big finite numbers can get and still be, in some sense, useful, then see

http://en.wikipedia.org/wiki/Graham's_number

I failed at math and am now a statistician, so the following may be completely wrong:

Although there are reasons we sort of know the average size of the “step” from one prime number to the next, the same knowledge (assuming the Riemann hypothesis) also implies that the _actual_ step size between any two adjacent primes will be very chaotic.

Think of it as knowing the distance of a flight from SF to NYC in miles, versus knowing it in inches. The former won’t help with the latter at all, even though they’re related.

Since an interesting visualization of a prime will (probably?) be very sensitive to the exact step size, the chaos is a vague reason to think there won’t be one.However, if you look at the _overall_ distribution of primes it can be both cool and mathematically interesting. Google will give you several examples.

]]>As others have said, the hex representation would be very boring since it’s a 2^k-1 prime (ie: All FF’s).

]]>I always see Santa Claus riding a shark.

]]>