Boing Boing 

Modern farm equipment has no farmer-servicable parts inside


Ifixit's Kyle Wiens writes about the state of modern farm equipment, "black boxes outfitted with harvesting blades," whose diagnostic modes are jealously guarded, legally protected trade secrets, meaning that the baling-wire spirit of the American farm has been made subservient to the needs of multinational companies' greedy desire to control the repair and parts markets.

Read the rest

Library's seed sharing system threatened by Big Ag regulations


The Minnesota Department of Agriculture has threatened the Duluth library's free seed-sharing program because it doesn't conform to the seed-distribution rules laid out for big agribusinesses.

Read the rest

Down on the bird's nest soup farm

How do you produce enough hardened bird-spit structures to feed a growing demand for one of the most expensive dishes in the world? Rowan Hooper visits the bird's nest soup farm.

As Idaho moves to criminalize undercover video with 'ag-gag' law, clip of dairy worker sexually abusing cow surfaces


A still from the video shot undercover at an Idaho dairy by animal rights group Mercy For Animals. Under a proposed law, filming scenes like this would become a crime.

In Idaho, the dairy industry has successfully lobbied lawmakers to propose a new law that would make it a crime for animal rights advocates or journalists to lie about their backgrounds to applications at dairy farms, for the purpose of documenting criminal activity or animal abuse.

Striking back at this proposed legislation that would curb free speech, Los Angeles-based nonprofit Mercy for Animals today released video of a dairy worker sexually abusing a cow at Dry Creek Dairy (owned by Bettencourt Dairies) in Idaho.

Read the rest

Why is a corn-based agriculture system problematic? Look at the numbers

The average Iowa farm has the potential to feed 14 people per acre, writes Jon Foley at Ensia. But planted with nothing but corn — and with almost all of that corn going to ethanol production and the feeding of animals — the same land can only feed 3 people per acre. Corn isn't a bad plant. But the corn system is a big problem.

Tokyo's "unmanned stores" - honor-system sheds where farmers sell their surplus produce


In Japan, farmers sell their blemished, surplus and otherwise unmarketable vegetables in unstaffed, honor-system roadside stalls called "Unmanned stores" ("mujin hanbai"). Produce is set out in trays with an anchored cashbox and a note inviting passers-by to take what they please and leave payment in the box. Farmers sometimes add recipes and other serving suggestions. Here's a map of 120+ mujin hanbais, in Nerima ward -- part of greater Tokyo (a city whose sprawl encompasses a surprising amount of farmland). A fascinating, lavishly illustrated article on PingMag explores the use and practice of these stores, including the growing trend to coin-operated lockers.

Read the rest

The case for flowers on the farm

South African mango farms that added patches of native, flowering plants not only attracted more pollinators than traditional, monoculture mango farms — they also produced more mangoes.

Image: Flowers Under Attack, a Creative Commons Attribution Share-Alike (2.0) image from suckamc's photostream

Shell's racist pesticide ad, 1957


From 1957, a disturbing, patronizing, racist Shell ad for pesticides, selling the superiority of big agribusiness.

Weekend Event - White

Bee deaths and historical context

We've talked before here at BoingBoing about how "Colony Collapse Disorder" is probably more than one thing, with more than one cause. Another important detail to keep in mind as you read media reports on bee deaths — the collection of symptoms that we call Colony Collapse Disorder is also probably a lot older than you think. In a guest post at Bug Girl's blog, bee expert Doug Yanega explains that CCD didn't start in 2006. In fact, periods of mass bee die-offs with the same collection of symptoms have been recorded at least 18 times, dating back to 1869.

An unbiased view of what the meat industry looks like from the inside

Most of the time, when somebody goes undercover inside a meat processing facility, it's done with the express goal of convincing other people to stop eating meat. But that wasn't what journalist Ted Conover had in mind. He was more just curious, especially given the growing trend of state laws preventing undercover infiltration of agribusiness facilities. So, using his real name and address, Conover got a job as a USDA meat inspector at a Cargill plant.

What's fascinating here is that the problems he finds have less to do with animal abuse (Maryn McKenna reports that Conover was surprised to find himself in a clean, safe, humane facility) and more to do with the abuse of antibiotics — a trend that is a major contributor to antibiotic resistance.

You can't read the full story for free, unfortunately. Such is the way of Harpers. But Maryn McKenna has a summary, Conover has a blog post on agribusiness gag laws, and you can buy access to the full story with a Harper's subscription.

Why the most horrible apple in the world is also the most grown

Despite almost universal agreement that basically defines "so boring as to become disgusting", the Red Delicious apple continues to be the most-grown variety in the US. More than 50,000 bushels of the vile things are turned out every year. This story by Rowan Jacobsen in Mother Jones explains the Red Delicious' undeserved success and follows the stories of entrepreneurs who are trying to bring back varieties of apple long lost to the consumer market.

A reasonable and fair breakdown of the facts on GM food

There's no reliable evidence that GM crops are dangerous to eat. On the other hand, they aren't the best way to reduce world hunger, and you can basically roll your eyes at anybody claiming GM crops are environmentally sustainable. Greg Jaffe cuts through the myths of GM food at The Atlantic.

The art and science of searching for water

The United States Geological Survey has an interesting FAQ report on dowsing — the practice of attempting to locate underground water with divining rods. It's got some interesting history and comparisons between dowsing and modern hydrology. The part on evidence for and against dowsing, though, is pretty sparse. If you want more on that, The Skeptic's Dictionary has some deeper analysis. The basic gist — what little research there has been suggests the successes of dowsing aren't any better than chance. (Via an interesting piece by Mary Brock at Skepchick about dowsing in the wine industry.)

Got questions about agricultural science? Get answers!

Sense About Science is a UK non-profit aimed at making science more understandable to the public. Right now, they're hosting a virtual plant science panel, where you can submit questions directly to scientists and see them answered on the Sense About Science website. What topics are fair game? Just about anything plant-related, from "Ash Dieback disease, to GM crops, bees to pesticides, mycotoxins in food to biofuels." Some answers are up already! (Via Mark Lynas)

Great moments in pedantry: How do you grow wine in a land without predictable seasons?

Winter is here. Which means it's time once again to start science-wanking the climate of George R.R. Martin's "Game of Thrones" series. Back in May, i09 had a great piece on possible astronomical explanations for Westeros' weird seasons, where Summer and Winter can each last a decade. The hard part (which prompted lots of great conversations here) is that the lengths of the seasons are apparently totally unpredictable. Here's an eight-year-long Summer. There's a Winter that lasts five years and another that lasts a generation. The implications for food storage, alone, are enough to drive one batty.

Word of Martin says this is magic. But it presents so many science-related questions that it's really, really fun to speculate about how you might explain the differences between that world and ours in purely naturalistic terms.

Now, at The Last Word on Nothing, Sean Treacy brings up a different sort of food-related problem that I'd not even considered while I was busy trying to figure out the volume of the average Westerosi grain silo. How do you grow wine grapes without predictable seasons?

... grapevines have a life cycle that depends on regular seasons. In winter, grapevines are dormant. Come spring they sprout leaves. As summer begins, they flower and tiny little grapes appear. Throughout the summer the grapes fill up with water, sugar and acid. The grapes are finally ready for picking in early autumn, then go back to sleep in winter. This cycle is why wineries can rely on a yearly grape yield. Obviously, in Westeros, something must be different about how grapes work.

But it turns out there is a real-world way to produce wine throughout an endless summer. São Francisco Valley is a wine-growing region in tropical Brazil that is only about 600 to 700 miles south of equator. Despite the constant warmth, they pump out two and sometimes three grape harvests a year. How? By depriving the vines of water and removing their leaves after every harvest, which forces them to hibernate. “They trick the plant into thinking it’s wintertime,” Busalacchi said.

The whole post is really interesting and you should read it. Who knew that the Arbor would lead me to be more educated about real-world booze?

Image: Wine, a Creative Commons Attribution (2.0) image from isante's photostream

GMO foods and Prop 37's defeat: an animated infographic video

Jess Bachman, whose infographics we've featured on Boing Boing before, recently started getting into animation as a way to tell data-intensive stories. This video on food labeling, and why so many big businesses donated so many millions to defeat California's Proposition 37, is his first experiment.

"I opened After Effects for the first time last monday and finished this video on GMO labeling last Friday," Jess says. "It's nothing too special, but I'm excited about this new story telling medium for me, so if you have any stories to tell, let me know."

Your suggestions for future videos welcome in the comments!

Insane CGI disco-video for teat-cup liners

Ray sez, "I was looking for teat cups to build a simple hand vacuum pump milking machine for our new pet goat. And I found this website for milking machine teat cup liners, with the associated disco dancing promotional video.

ClassicPro - Silicone Liners (Thanks, Ray!)

How to make corn more sustainable? Grow less of it.

I wrote a story about the future of crop science that's printed in the June issue of Popular Science. When I was doing the research, the big question I wanted to ask was this: "How can we take the most important agricultural crops and make them more sustainable and adapted to climate change?"

I suppose there are a lot of ways to define "most important", but I went with the crops that feed the most people. Wheat, rice, and corn account for more than 50% of all the calories consumed on Earth. So those are the plants I looked at. And that's where I ran into a surprise. Scientists had some really interesting, concrete suggestions for how to prepare wheat and rice for a changing world. But with corn, they took a different tack. Basically, the scientists said the best thing to do with corn was use less corn.

Large yields and high calorie content have made corn the most popular and most heavily subsidized crop in America. That’s an increasingly urgent problem. In 2010, corn production consumed nine million tons of fertilizer and led to greenhouse-gas emissions equivalent to 42 million tons of CO2—and corn isn’t even something we can easily eat. “The digestibility of unprocessed corn to humans isn’t very high,” says Jerry Hatfield, a plant physiologist with the USDA. “We have to put it through processing of some sort, whether that happens in a factory or an animal.” Set those problems aside, and a deal-breaker remains: modern corn is more sensitive to heat than any other major crop, and attempts to create drought- and heat-resistant corn through genetic modification are still unproven. A recent study found that a 3.6°F increase in global temperatures could make corn prices twice as volatile.

All of which is why many experts advocate replacing corn with a portfolio of hardier, more nutritious and more efficient food sources. Wheat production generates less than half the fossil-fuel emissions of corn and returns 63 percent more protein. Other crops actually give back to the land. Chickpeas and peanuts contain twice as much protein as corn, and they increase the nutrient content of soil.

Read about the other suggestions for adapting major food crops to climate change.

Image via WATTAgNet

Interesting interview about the downsides of local food

Ever since researching Before the Lights Go Out, my book on energy in the United States, I've been a little skeptical of the locavore movement. Sure, farmer's markets are a nice way to spend a weekend morning, and a good way to connect with other people from my neighborhood. There are arguments to be made about creating local jobs and contributions to local economies. But I see some holes in the idea, as well—particularly if you expect eating local to go beyond a niche market or a special-occasion thing.

Think about economies of scale—the cost benefits you get for making and moving things in bulk. That works not only for cost (making non-local food often cheaper food), but it also works for energy use. It takes less energy for a factory to can green beans for half the country than it would take for us all to buy green beans and lovingly can them at home. When our energy comes from limited, polluting sources—that discrepancy matters. Plus, you have to think about places like Minnesota, where I live. In winter, local food here would require hothouse farming—something that is extremely unsustainable, as far as energy use is concerned.

Basically, I think there are benefits to local food. And I don't think the problems with local food mean we shouldn't change anything about our food system. But we have to acknowledge that the locavore thing isn't perfect, and maybe isn't as sustainable as we'd like it to be. That's why I like this Grist interview with Pierre Desrochers, a University of Toronto geography professor and author of The Locavore’s Dilemma: In Praise of the 10,000-Mile Diet. Desrochers talks about some of the problems he sees with the sustainability of local eating and explains the nuance of his argument. It's not "local eating" vs. "change absolutely nothing, hooray for Monsanto!" And that's what makes it interesting, and important.

Q. Was there anything that surprised you as you got deeper into the issues?

A. I was surprised by the number of local food movements I discovered in the past, but I was not surprised to see that they all failed. There was a local food movement in the British empire in the 1920s. And it turns out that even the British empire was not big enough to have a successful local food movement. The first world war cut Germany off from the rest of the world, so they had to revert to local food. And of course people starved there, and they had a few bad crops, and all the problems that long-distance trade had solved came back with a vengeance.

Nobody would bother importing food from a distance if it did not have significant advantages over local food. [In the book] we talk about food miles, but I’m sure you’re familiar with the arguments — transportation is a tiny thing [in terms of climate impacts], and if you try to cut down on transportation, then you need to heat your greenhouse as opposed to having unheated greenhouses further south. Then your environmental footprint is actually more significant.

Read the rest of the interview on Grist

When urban beekeeping gets too dense

Bees need a certain amount of nearby green space in order to find enough pollen to survive. Without that, bees can starve. They can also end up subsisting on a diet of syrup that's about as healthy for them as a diet of burgers and fries would be for you and I. London has had die-offs of bees in the past, when beekeeping got more popular than the city's limited green space could support. Some people are now worried that New York City could be headed toward that problem. (Via Hannah Nordhaus)

Gardening on the Moon

Frycook posted this fascinating video from the Apollo era on the BoingBoing Submitterator. The basic gist: Back in the day, NASA scientists tried exposing various crops—corn, lettuce, tobacco ... you know, the essentials—to moon dust. The plants weren't grown in the dust, exactly. Instead, it was scattered in their pots or rubbed on some of their leaves. In this study, the plants that were exposed seemed to grow faster than unexposed plants.

That's pretty interesting, so I dug around a little to find out more about these studies. Turns out, growing plants in lunar soil isn't quite as promising as the video makes it sound, but it's not a ridonculous idea, either. In 2010, scientists at the University of Florida published a review of all the Apollo-era research on this subject, which amounted to exactly three published studies. From that data, we can say that the plants weren't obviously affected in any seriously negative ways by their exposure to lunar soils—which is good—but we can't really say the plants grew better their terrestrial-only cousins, either.

In the end, and as recorded in the peer-reviewed scientific literature, there were only three published primary studies of seeds, seedlings, and plants grown in contact with lunar materials. In those three cases, small amounts of lunar material were used, and the plants were relatively large. In general, the dusting of plants or the mixing of lunar fines with other support media makes plant interaction with the lunar material a small part of the plant experience. At no point were plants actually grown in lunar samples in the way that one might imagine, with the entire root structure growing through and in constant association with a lunar soil. It is no accident that the wording of most of the titles of the studies, as well as the careful discussion within the papers, refers to growth “in contact with” lunar samples—not “in” lunar samples. With only a small portion of the roots, for example, interacting with the lunar materials, it is likely that plant responses to the lunar materials were, therefore, quite attenuated due to the lack of an extensive plant/lunar soil interface. Biophysical issues, such as root penetration of dry and variously hydrated lunar sample types, were completely unaddressed. Thus, the effects of actual growth within lunar soils were simply not a part of the plant studies of the Apollo era.

On the other hand, in 2008 scientists with the European Space Agency tried growing marigolds in a medium of crushed rock—basically the much-cheaper equivalent of growing plants in moon "soil". There's no indication that the marigolds did better than those grown in real dirt, but they did grow and they did survive (even without any added fertilizer), which could be indirect evidence in support of the Moon gardeners of the future.

Watch the video on YouTube

Read a 1969 newspaper clipping about the NASA experiments

Read the 2010 review paper—available for free, in its entirety

Read a BBC story about the 2008 marigold experiment

The secret lives of citrus fruit

Okay, I had no idea that lemons and grapefruit are actually hybrid mixes of other fruits. How did I get to age 31 and miss this? Better yet, both citruses were born accidentally, of illicit love affairs not arranged by human hands. Lemons are the love child of citron and orange. Grapefruit the natural daughter of Asian pomelo and Barbados sweet orange. (Via David Despain)

Rockets fly at Thai rice festival

REUTERS/Chaiwat Subprasom

Participants in a rocket competition cheer after their rocket was successfully launched during the rocket festival known as "Bun Bangfai" in Yasothon, northeast of Bangkok, May 13, 2012. The festival marks the start of the rainy season when farmers are about to plant rice.

Is this the banana your grandchildren will eat?

Over the weekend, I stumbled over a great Damn Interesting post about the history and future of the banana. Some of you already know the basic story here: Bananas, as we know them, cannot reproduce. The ones we eat are sterile hybrids. Like mules. The only way that there are more bananas is that humans take offshoots from the stems of existing banana trees, transplant them, and allow them to grow into a tree of their own. It's basically a cheap, low-tech version of cloning, and it has a long history in agriculture. (Note: This would be why Christian evangelist Ray Comfort's video on bananas has become a classic Internet LOL. In the video, Comfort presents the banana—particularly its seedless flesh, handy shape, and easy-access peel&mash;as a testament to the perfection of supernatural design ... completely ignoring the fact that all those things are the result of human-directed agricultural selection.)

The downside to this is that clones are, shall we say, not terribly genetically diverse. Turns out, a lack of genetic diversity is a great way to make yourself vulnerable to disease. Back in the 1950s, a fungus all but wiped out a variety of banana called the Gros Michael. Up until then, the Gros Michel had been the top-selling banana in the world. It was the banana your grandparents ate. You eat the Cavendish, a different variety that replaced Gros Michael largely on the strength of its resistance to the killer fungus.

Read the rest

How do you solve a problem like agriculture?

Forty percent of the Earth's surface is devoted to agriculture. The Colorado River, tapped for irrigation, no longer flows into the ocean. Agriculture also makes up 30% of all human-created greenhouse gas emissions—more than electricity, more than transportation.

Agriculture matters. And it's not an option, but a necessity.

In this talk for TEDxTwinCities, University of Minnesota scientist Jon Foley talks about the challenges facing the future of food. How do we produce more food without consuming more land, water, and fossil fuels? The only solution, according to Foley, is a combination of things. Not just "go organic". Instead, he's advocating combining some organic practices with industrial efficiency, changed diets, new varieties of food crops, and more.

Video Link

Bad news for the Big Rock Candy Mountain

Here is a horrifying concept few of us want to contemplate: Peak chocolate. (Via Steve Portigal)

Seed Libraries Crop Up

Just as one seed can produce many seeds, one idea can change many lives. Free public libraries were revolutionary in their time because they provided access to books and knowledge that had not previously been available to a large segment of the population. A free seed lending library can also provide people with a chance to transform their lives and communities by providing access to fresh, healthy food that may not otherwise be available.

Read the rest

Skeptical take on the Green Revolution

CBC's long-form/big think radio program Ideas recently featured a lecture called "Feeding Ten Billion" from Raj Patel, an Africa development scholar formerly with the World Bank, and author of The Value of Nothing. Patel's perspective on global agriculture and social justice is incisive and contrarian. I've never heard anyone talk about the demerits of the "Green Revolution" in agriculture like this, and it was an eye-opener. A perfect hour-long listen for the weekend's chores. MP3 link

Lab-grown meat gets closer to reality

You see that whitish stuff in the petri dish? That, my dears, is lab-grown meat. Meat made without all the physical, environmental, and ethical mess that goes along with raising actual animals for food.

The little tabs on either end of each piece of meat are Velcro, used to stretch and "exercise" the muscle cells that make up this lab meat. (Some earlier attempts at growing meat in the lab failed because, without exercise, muscle tissue isn't something that's particularly palatable.) It's white because there's no blood running through it. And, to create food, you'd have to combine this single layer of muscle tissue with thousands of other layers of muscle and lab-grown fat.

Dutch biologist Mark Post, the man behind the meat, thinks that he can build the world's first lab-grown burger within a year for a cost of $345,000.

You can read the full story in an article by Reuters' Kate Kelland

Image: Francois Lenoir / Reuters

Potash mining on the Colorado River

EcoFlight is a group that photographs ecological threats in western states from the vantage point of small airplanes. The idea is to give people a clear picture of the contrast between wilderness and the industrial sites that threaten the ecological health of that wilderness. It's an interesting idea, and certainly results in some amazing photos, such as this shot of evaporation ponds at a potash mining facility near Moab, Utah.

Potash is, essentially, a generic name for several different potassium-laden salts. It's most commonly used as an ingredient in fertilizer, as potassium (along with nitrogen and phosphorous) is one of the three key nutrients plants need to grow. The main environmental threat: How mining potash in the quantities required by the modern agricultural industry could threaten water quality and supplies, and soil quality. It's worth checking out the rest of the photos in the set, which give you a better perspective on where the evaporation ponds sit in context with the local landscape and the Colorado River.

This Potash mine is located 20 miles west of Moab. The mine began underground excavation in 1964 and was converted in 1970 to a solar evaporation system. This mine produces between 700 and 1,000 tons of potash per day.

Water is used from the nearby Colorado River in the production of Potash by a company called Intrepid Potash®. Water is pumped through injection wells into the underground mine which dissolves layers of potash more than 3,000 feet below the surface. The resulting "brine" is then brought to the surface and piped to 400 acres of shallow evaporation ponds. A blue dye is added to the ponds to assist in the evaporation process. These ponds are lined with vinyl to keep the brine from spilling back into the Colorado River. A major by-product of this process is salt. The salt is used for water softening, animal feed and oil drilling fluids as well as many other applications.

Via Martin LaMonica