Flexible, printable circuits inspired by goldbug beetle

Poking a golden tortoise beetle ("goldbug") triggers the insect's color to change from gold to a red-orange. Inspired by the natural system underlying that insectoid superpower, MIT researchers have developed flexible sensors circuits that can be 3-D printed. Eventually, the technology could lead to sensor-laden skin for robots. From MIT News:

“In nature, networks of sensors and interconnects are called sensorimotor pathways,” says Subramanian Sundaram, an MIT graduate student in electrical engineering and computer science (EECS), who led the project. “We were trying to see whether we could replicate sensorimotor pathways inside a 3-D-printed object. So we considered the simplest organism we could find...."

The MIT researchers’ new device is approximately T-shaped, but with a wide, squat base and an elongated crossbar. The crossbar is made from an elastic plastic, with a strip of silver running its length; in the researchers’ experiments, electrodes were connected to the crossbar’s ends. The base of the T is made from a more rigid plastic. It includes two printed transistors and what the researchers call a “pixel,” a circle of semiconducting polymer whose color changes when the crossbars stretch, modifying the electrical resistance of the silver strip.

In fact, the transistors and the pixel are made from the same material; the transistors also change color slightly when the crossbars stretch. The effect is more dramatic in the pixel, however, because the transistors amplify the electrical signal from the crossbar. Demonstrating working transistors was essential, Sundaram says, because large, dense sensor arrays require some capacity for onboard signal processing.

Read the rest

Autonomous bat bot weighs 93g, flies like a bat

A team of roboticists from Caltech and Urbana-Champaign have built a biomimetic "bat bot" that uses nine joints to deform a foot-wide wing membrane to achieve breathtaking aerial maneuvers. Read the rest

Are you ready for robots skinned with sensitive hairs?

Biomimicry in robotics has led to robots that can climb, fly, and swim better. Now researchers have developed hair-like filaments for robots that allow them to have more fine-grained senses of touch, sensing even forces as delicate as coming in contact with a piece of tissue. Read the rest

New flying robots inspired by creatures of the skies

Biomimickry continues to improve and refine specialized drones and flying robots. Mindy Weisberger at LiveScience dives into an issue of The Royal Society's journal Interface Focus on coevolving advances in animal flight and aerial robotics. Read the rest

Self-healing fabrics inspired by squid teeth

Penn State researchers funded by the Army Research Office and the Office of Naval Research have posted video showing their progress on "self-healing" textiles that use proteins similar to those found in human hair and squid teeth to allow fibers to coated in polyelectrolytes so that they can be set and bonded using safe solvents under ambient conditions. Read the rest

Airbus designed and 3D printed a motorbike inspired by a skeleton

Aerospace corporation Airbus's Light Rider concept motorbike looks a bit like something HR Giger would draw (although his, of course, would be much cooler). In reality, the 3D-printed frame was inspired by skeletal structures that enable its bare-metal frame to weigh just 13 pounds but support a 220 pound rider. From the BBC News:

To design the bike's frame and swingarm rear section, (Airbus's) APWorks team collaborated with Altair Engineering, a US-based consulting company whose structural-design software works through the principle of "morphogenesis" — which in biology refers to process of environmental forces defining a natural organism's form and structure. Morphorgenetic software is written to create forms that achieve maximum strength with minimal mass, and Altair's system has contributed to the designs of such boundary-pushing machines as the Boeing 787 Dreamliner, the Volvo Ocean 70 racing yacht, and the jet-powered Bloodhound SSC, which next year will attempt to break the land speed record...

The 3D-printing process employed to produce the Light Rider's frame is a marvel unto itself. The system uses a laser to melt powdered aluminium alloy in thousands of layers, each only 60 microns thick — about the width of a human hair. Airbus Group Innovations, the company’s research arm, developed the frame's aircraft-grade alloy, called Scalmalloy, which it claims matches the specific strength of titanium. The fabrication process — and the strength of the material — allows the morphogenetic software to specify finer and thinner structures than traditional tooling or moulding methods of manufacturing can produce. In fact, notes Gruenewald, the Light Rider’s frame even features hollow branches that hide cables and other components.

Read the rest

Ant colonies could inspire better network algorithms and robot swarms

Colonies of ants base decisions like where to establish a nest based on their population density. Scientists theorize that ants can estimate how many of their kind are around by randomly exploring the area and bumping into other ants. New research from MIT computer scientists not only supports this theory but could also be used to analyze social networks, improve robot swarms, and yield improve algorithms for networked communications in distributed computing applications. From MIT News:

“It’s intuitive that if a bunch of people are randomly walking around an area, the number of times they bump into each other will be a surrogate of the population density,” says Cameron Musco, an MIT graduate student in electrical engineering and computer science and a co-author on the new paper. “What we’re doing is giving a rigorous analysis behind that intuition, and also saying that the estimate is a very good estimate, rather than some coarse estimate. As a function of time, it gets more and more accurate, and it goes nearly as fast as you would expect you could ever do.”

Musco and his coauthors — his advisor, NEC Professor of Software Science and Engineering Nancy Lynch, and Hsin-Hao Su, a postdoc in Lynch’s group — characterize an ant’s environment as a grid, with some number of other ants scattered randomly across it. The ant of interest — call it the explorer — starts at some cell of the grid and, with equal probability, moves to one of the adjacent cells. Then, with equal probability, it moves to one of the cells adjacent to that one, and so on.

Read the rest

MIT researchers 3D print synthetic hairs

MIT Media Lab researchers developed software to design and 3D print hair-like structures in bulk. Eventually, the 3D-printed hair could be used as sensors, actuators modeled on the cilia in our own lungs, and even Velcro-like adhesives for robots and other devices.

Their innovation was actually on the software side of the 3D-printing process. From MIT News:

Instead of using conventional computer-aided design (CAD) software to draw thousands of individual hairs on a computer — a step that would take hours to compute — the team built a new software platform, called “Cilllia,” that lets users define the angle, thickness, density, and height of thousands of hairs, in just a few minutes.

Using the new software, the researchers designed arrays of hair-like structures with a resolution of 50 microns — about the width of a human hair. Playing with various dimensions, they designed and then printed arrays ranging from coarse bristles to fine fur, onto flat and also curved surfaces, using a conventional 3-D printer...

To demonstrate adhesion, the team printed arrays that act as Velcro-like bristle pads. Depending on the angle of the bristles, the pads can stick to each other with varying forces. For sensing, the researchers printed a small furry rabbit figure, equipped with LED lights that light up when a person strokes the rabbit in certain directions. And to see whether 3-D-printed hair can help actuate, or move objects, the team fabricated a weight-sorting table made from panels of printed hair with specified angles and heights.

Read the rest

Small shelter inspired by armadillo

Architect Ron Arad designed this lovely indoor/outdoor shelter, called the Armadillo Tea Pavilion. The shells are made from the likes of oiled plywood or PVDF-coated timber composite. The hardware is brass and bronze.

The Armadillo Tea Canopy is designed as an independent shell structure, for use indoors and outdoors, and provides an intimate enclosure, shelter or place of reflection within a garden, landscape, or large internal space. In its basic configuration, the Pavilion comprises 5 moulded shells, each made of repeatable, modular components which are mechanically-fixed together with exposed fixings and stiffening brackets. The modularity of components provides freedom to configure the tea canopy to suit a number of arrangements, which can be expanded when using additional shells.

A limited number of Armadillo Tea Pavilions are available from Revolution Precrafted.

Read the rest

Watch this team of tiny micro-robots pull a car

Stanford engineers demonstrated how six tiny microTug robots -- with gripping, adhesive feet inspired by geckos -- can work together to pull a 4,000 pound car on polished concrete, albeit very very slowly.

The researchers from Stanford's Biomimetics & Dexterous Manipulation Laboratory published their work on the microTug bots in the current issue of the journal IEEE Robotics and Automation Letters.

Read the rest

Watch the solar-powered flight of this robotic raven

The University of Maryland Robotics Center's new Robo Raven III V4 soars on larger flapping wings that "have flexible solar cells giving the vehicle an extra 10 Watts of power. This allows this robotic bird to fly longer and recharge outdoors." Read the rest

Micro-robots and programmable bees

National Geographic profiles Robert Wood, Harvard's maker of micro-robots inspired by nature, like these programmable bees. Read the rest

Octobot: robot inspired by octopus

Researchers at Greece's Institute of Computer Science have demonstrated the Octobot, a shoebox-sized swimming robot propelled by eight webbed arms. Video below. Read the rest

Biosensors inspired by turkeys

UC Berkeley researchers took inspiration from a turkey's color-changing wattle to design a biosensor that detects toxins or pathogens. Turkey wattles change between blue and red as the blood vessels between the collagen fibers swell or contract. The researchers used benign viruses to self-assemble into collagen fiber-like structures that change colors as they expand and contract when exposed to chemicals like hexane, methanol, and even TNT.

“In our lab, we study how light is generated and changes in nature, and then we use what we learn to engineer novel devices,” said professor Seung-Wuk Lee who co-led the research.

"Turkeys inspire smartphone-capable early warning system for toxins" Read the rest

Robot cheetah demonstrates efficient new motors

MIT researchers built a 70-pound robot "cheetah" meant to demonstrate the high efficiency of a new electric motor design. Among other improvements, the design enables the impact energy of the robot's leg hitting the ground to be captured and fed into the robot's battery. Soon, they expect the motors to enable the cheetah-bot to gallop at 35 mph which, of course, is still just half the speed of a real cheetah. However, it will hit those speeds much more efficiently than other running robots. Read the rest

Eel's glow as a test for human disease

The biology behind the green glow of Japanese freshwater eels could lead to new tests for jaundice and liver problems. RIKEN research institute scientists determined that a substance found in bile, bilirubin, is what triggers a protein in the eel, called UnaG (after unagi), to glow. Turns out, the amount of bilirubin in humans is a good indicator of liver health. Using a synthetic version of UnaG, the scientists could measure the bilirubin in a blood sample based on its glow. A similar technique may also aid in the study of tumors. "An eel's glow could illuminate liver disease" (Science News) Read the rest

Porcupine barbs may inspire new IV needles

This is a microscopic image of a porcupine quill. Harvard medical researcher Jeffrey Karp and his colleagues are studying the quills to determine whether they might inspire a new design in hypodermic needles. According to their paper published today in PNAS, the barbs on the quill enable it to slide in smoothly but keep it in place, characteristics that would be useful in, say, an IV drip. (Smithsonian) Read the rest