400 ppm carbon dioxide? In my atmosphere?

It's true, at least for today. Although the real concern in climate science is average concentrations of carbon dioxide over much longer periods of time, surpassing the 400 ppm mark, even for a day, is a historic milestone. 400 ppm was once a level we talked about avoiding altogether through mitigation of greenhouse gas emissions. Now, it's a reminder that we're not really doing anything to circumvent the steady increase in global carbon dioxide concentrations and global average temperature. Happy Friday! Read the rest

How the effects of climate change can create more climate change

One of the interesting things about the global carbon dioxide and climate systems is the concept of feedback loops. You already know that as atmospheric concentrations of carbon dioxide go up (and with them, the global average temperature) you get lots of different kinds of changes all over the place. For instance, mountain pine forests start experiencing warmer winters and smaller snowpacks. But, as those changes happen, they can actually trigger secondary effects that contribute to, and increase the rate of, climate change.

In this video, you'll learn about how warmer temperatures and lower snowpacks are contributing to the spread of massive pine beetle infestations across the western United States. This is more than just inconvenient. The pine beetles can quickly kill huge amounts of trees, raising the risk of property-destroying forest fires and razing whole ecosystems. And, as the trees die en masse, forests that were once carbon sinks (absorbing more carbon dioxide than they released) become emitters—adding more carbon dioxide to the atmosphere.

Thanks to Barfman for Submitterating!

Video Link Read the rest

A hole in the ground: Storing carbon dioxide thousands of feet below Illinois

One blazing hot afternoon in August of 2010, I stood on a mountain top in Alabama, staring at a styrofoam beer cooler upended over the top of a metal pole. Alongside me were a couple dozen sweaty engineers and geologists. That beer cooler was one of the few visible signs of the research project happening far below our feet.

Over the course of two months, scientists from the University of Alabama had injected 278 tons of carbon dioxide into the Earth. The goal was to keep it there forever, locked in geologic formations. The beer cooler was a key part of that plan. Beneath it sat the delicate electronic components of the monitoring system the scientists were using to make sure none of the captured carbon dioxide found its way out of the mountain. Beer coolers, it turns out, make great low-cost heat protection.

Carbon capture and storage—the process of removing carbon dioxide from factory and power plant emissions and trapping it where it can't reach the atmosphere—is an interesting idea. It has the potential to help us make our current energy systems cleaner as we work on building more sustainable systems for the future. With that in mind, the Department of Energy has seven regional research teams testing carbon capture and storage at sites around the United States.

So far, nobody in the United States has put this full process to the test at the scale that would be necessary in the real world. But, in the past couple of weeks, scientists at the Midwest Geological Sequestration Consortium began pumping carbon dioxide at a new site, one that is going to give us our best picture yet of what full-scale carbon capture and storage (CCS) will be like. Read the rest