Boing Boing 

Cold-brew chocolate: advanced topics


Ever since I blew my mind by cold-brewing ground cacao nibs, I've been experimenting with the process, and have discovered some amazing variations on the formula.

Read the rest

What happens when you dip a light bulb in hydrofluoric acid?

"Hydrofluoric acid is probably the most feared chemical compound that there is," says Sir Martyn Poliakoff, a chemistry professor at the University if Nottingham. "The reason it's so feared is that it is very corrosive. It will burn through human skin, even quite a small exposure on your skin can cause a heart attack."

Hydrofluoric acid will also burn through glass. Naturally, the first thing you should do once you obtain some is immerse a lit incandescent bulb into a beaker of it.

WATCH: Sugar in liquid nitrogen glows when exposed to UV light

Mikhail Svarichevsky demonstrates an interesting phenomenon: supercooled sugarcubes briefly glow green when exposed to UV light. Don't tell Insane Clown Posse about this baffling miracle.

Molecules: The Elements and the Architecture of Everything

molecules-cover

In 2009, Theodore Gray blew minds with his gorgeously photographed book, The Elements: A Visual Exploration of Every Known Atom in the Universe, which sold over a million copies. Five years later, Gray has created this book, which describes what happens when elements are snapped together to make molecules, and the result is a masterpiece (thanks in no small part to Nick Mann’s drool-inducing photographs). Gray organizes the book by categories of molecules — inorganic, organic, acids, bases, soaps, solvents, oils, sweeteners, and other common substances — highlighting their similarities and differences. Suddenly, the physical world makes a lot more sense.

Molecules: The Elements and the Architecture of Everything
by Theodore Gray (Author), Nick Mann (Photographer)
2014, 240 pages, 10.25 x 9.5 x 1 inches, Hardcover

Take a look at other beautiful paper books at Wink. And sign up for the Wink newsletter to get all the reviews and photos delivered once a week.

molecules-01

molecules-02

molecules-03

molecules-04

molecules-05

molecules-06

molecules-07

DIY alchemy

NewImage1

NewImage.png

Written by three science instructors, The Chemistry of Alchemy: From Dragon's Blood to Donkey Dung, How Chemistry Was Forged" is a combination weird science history and DIY projects book.

Read the rest

Explosive reaction of sodium in a pond

These young folks have a lot of fun throwing a big hunk of sodium into a pond. If you're impatient, forward to the boom at :53.

Psychedelic hero Alexander Shulgin nearing death

165296 196973386984158 2452349 n

Our best wishes and deep respect to psychedelic pioneer and maverick chemist Alexander "Sasha" Shulgin who is preparing for his final trip on Earth; he is "surrounded by love and a lot of laughter," his wife and research partner Ann Shulgin posted on Facebook:

Read the rest

$5 programmable chemistry set inspired by music box

Stanford bioengineer Manu Prakash and his colleagues devised a $5 "chemistry set" that can be programmed to mix various reactants by punching holes in a paper tape and feeding it through the handheld device. Prakash says he was inspired by a hand-cranked music box. This latest device for what Prakash calls "frugal science" is on the heels of his amazing 50-cent folding microscope that I blogged previously.

"Music box inspires a chemistry set for kids and scientists in developing countries" (SCOPE)

HOWTO season a cast-iron pan -- with SCIENCE


Sheryl Canter's post on the science of cast-iron pan seasoning is a fascinating and practical tale of flaxseed and kitchen chemistry. It's a long process -- you need to season the pan six or so times, each time taking a couple of hours -- but the science is sound and the proof is in the hard, nonstick coating your pan will have when you're done.

Read the rest

Preventing pigsplosions

The bad news: Massive piles of pig manure are foaming up and then exploding and nobody is really sure why. The worse news: The only solution (other than, you know, not raising so many pigs all together) is to feed the pigs more antibiotics — a practice that contributes to antibiotic resistance.

Why do dog farts stink so bad?

Because puppies are filled with love ... and also hydrogen sulfide.

Building a better soy burger

Mother Jones has an interesting story about several start-ups trying to create fake meat, dairy, and eggs that are not only sustainable, but appetizing ... even to people who aren't already committed vegans. It's a story about business and ethics, but it's also a story about chemistry and food engineering. As a meat eater who does enjoy seitan, I'm intrigued.

Polonium-210: A pretty good way to horribly murder somebody

Last week, a Swiss investigation found evidence to support the idea that Yasser Arafat was poisoned with polonium-210 — a radioactive element that's safe to carry around in a container, but causes unstoppable death if swallowed. NPR sat down with Deborah Blum, a science writer who specializes in the chemistry of poisonings, to talk about what makes polonium-210 a particularly handy way to off somebody and why it's so hard to bring a polonium poisoner to justice.

A mysterious form of water with unique chemical properties

In the 1960s, Russian scientists discovered a new form of water that congealed at room temperature, froze at -40, and wouldn't boil no matter the temperature. For a few brief years, "polywater" was a scientific rage — the subject of pop culture craziness, Cold War research races, and CIA interrogations. At Slate, Joseph Stromberg tells the story of polywater and explains why, despite all that hype, most of us have never heard of it today.

How scientists created an element

The synthetic (or man-made) elements are the ones with silly-sounding names, found along the bottom of the periodic table — Einsteinium and Nobelium, Livermorium and Mendelevium, and more. Unlike the rest of the elements, you won't find them just hanging out in nature. They have to be created in a laboratory, and they only exist for a limited amount of time — some no more than milliseconds. Though new ones have been discovered/created as recently as 2010, the 1950s and 60s were sort of a heyday of synthetic elements, with different laboratories locked in a race to find the niftiest new things first.

During that time, researchers at Lawrence Berkeley National Lab made a film strip reenacting their own 1955 discovery of the element Mendelevium. The film lay forgotten in storage for 60 years until it was recently uncovered and restored by retired physicist Claude Lyneis. Originally just a silent sequence showing real Mendelevium discoverers Al Ghiorso, Bernard Harvey, Gregory Choppin, and Stanley Thompson demonstrating how they'd found the 101st element, the film has been updated with narration and sound effects and is a pretty cool explanation of where synthetic elements come from.

Video Link

Nobel Prizes 2013: Computer models that can mimic life

We talk about computer modeling a lot in the context of climate science — powerful algorithms that help scientists get a better idea of how climate systems work, how they spin off into weather, and how the systems and the weather are altered by both nature and humans. But modeling plays a huge role in other sciences, as well. In fact, on the flip side of the climate change coin, modeling is an essential part of designing better solar cells to turn energy from the Sun into useable electricity. If we ever do master the art of artificial photosynthesis, we'll have the three men who just won this year's Nobel Prize for Chemistry to thank.

Back in the 1970s, Martin Karplus of Université de Strasbourg, France and Harvard University, Michael Levitt of Stanford, and Arieh Warshel of USC, were instrumental in constructing the first computer models capable of predicting the effects of chemical reactions — including ones that happen far too quickly to be observed. Today, their work touches the daily lives of chemists all over the world, doing research from solar cell design to drug development.

Read the rest

Sniffing a beaver's butt: a surprisingly pleasant experience

From a National Geographic story by Mollie Bloudoff-Indelicato, the quote of the week:

“I lift up the animal’s tail,” said Joanne Crawford, a wildlife ecologist at Southern Illinois University, “and I’m like, ‘Get down there, and stick your nose near its bum. People think I’m nuts,” she added. “I tell them, ‘Oh, but it’s beavers; it smells really good.’”

Crawford is talking about castoreum, a naturally occurring anal secretion found in beavers. The furry animals use it to mark their territory. We humans, however, have also found uses for castoreum. Most notably, as an ingredient in vanilla-flavored and vanilla-scented products.

Pictured: Hardened lumps of beaver anal secretions, as stored in the Deutsches Apothekenmuseum, Heidelberg Castle, Heidelberg, Germany. Photo by H. Zell via CC

The magic ingredient in a chocolate dip cone

What makes the dip in a chocolate dip cone harden from a goo into a crispy shell? It's coconut oil.

The history of sarin

UN investigators confirmed this week that sarin was used in attacks on civilians in Syria, and, at The Guardian, Ian Sample has an interesting story about the history of this poison, starting with its origins in Nazi Germany. Interestingly, it wasn't originally developed specifically to be used on people. Sarin was an accidental discovery that came out of IG Farben research into new insecticides. Nevertheless, the formula was quickly handed off to the German military. One of the inventors of sarin eventually ended up convicted of war crimes at Nuremberg. He served four years — before being recruited into the US chemical weapons program.

How one chemist does her research, even though her lab makes her sick

LuAnne McNulty is an organic chemist. A few years ago, she developed severe asthma that's triggered by ... well ... organic chemistry. Not too long ago, that biological reaction would have put her out of a job. Today, she's able to conduct research (if not do it herself) and advise younger scientists with the help of really simple tech solutions.

Chemistry mystery solved: The death of Chris McCandless

Chris McCandless was the hiker and simple living advocate who died from starvation in Denali National Park in 1992. His story was later made into a book and movie called Into the Wild. But there's always been something a little weird about McCandless' death. How did a guy dedicated to back-to-the-land knowledge and safe foraging end up starving to death? At The New Yorker, writer Jon Krakauer explains how the mystery of McCandless' death was finally solved. The evidence points to a secret of food chemistry with ties to Nazi death camps.

How physics sunk the Titanic

The iceberg wasn't the only thing that took down the Titanic, explains Yale University materials scientist Anissa Ramirez. Instead, cold temperatures in the icy North Atlantic changed the behavior of the materials that made up the boat — changes that reduced the ocean liner's ability to withstand a head-on iceberg collision.

Video Link

Check out more Anissa Ramirez science videos

Kids learn butter-making and chemistry with "Crazy Aunt Lindsey"

I'm loving the "Doing Stuff with Crazy Aunt Lindsey" series of hands-on science YouTube videos for kids. I can't find the host's full name on the YouTube page or her website, but she's a fantastic presence and so are the kids that appear with her. The result is a series of videos that are adorable, high-spirited, creative, and fun—full of great, simple projects that pack a surprising amount of science "oomph" behind them.

Video Link

Chemist presents results of study on booze, irony

Scientist sets out to determine the chemical differences between bourbon, rye, Tennessee, and other whiskeys. His name: Tom Collins. No. Seriously.

True tales of a chemistry lab accident

The artificial sweetener Splenda was discovered when a chemistry grad student misunderstood his advisor's instructions to "test" a compound and tasted it, instead. (This piece at Scientific American focuses on how the brain responds to, and is changed by, sweeteners.)

Ancient nanotechnology

How the ancient Romans created color-changing glass goblets that shifted colors based on what you put in them.

The chemistry behind Walter White's famous meth

At Popular Mechanics, an analytical chemist uses clues from Breaking Bad to explain both the real science behind Walter White's meth formula, and the key flaw that either means the show's writers are taking a little artistic license or Walter is even more of a chemistry genius than anybody thought.

Lead on your lips

Ancient Roman cosmetics were notoriously poisonous — despite the fact that it was already a well-known toxin, folks slathered their faces in white lead and dabbed red lead rouge on their cheeks. You wouldn't drop dead from a single application. The problem built up over time, as more and more and more of the stuff was applied (and absorbed) by your body. And that's still true today. In a new column for The New York Times — all about chemicals and your environment — Deb Blum writes about the lead (and aluminum and cadmium and all sorts of of other metals) that contaminates modern lipstick. The doses are low, much lower than Roman times. But the reapplications are many. Lipstick wearers touch up their color as often as 20 times in a single day.

Meet the woman who keeps Walter White (scientifically) honest

The blue meth made by Walter White is bluer than any meth that could actually exist in real life — and other interesting things that you learn while talking to Breaking Bad's scientific advisor, University of Oklahoma chemistry professor Donna Nelson.

"Older than dirt" not really that old in the grand scheme of things

The Earth is about 4.5 billion years old. Actual dirt — that is to say, like the stuff in your backyard, not rocks that were once dirt — probably dates to about 2 million years ago. Dirt is young! (Relatively speaking.)