Boing Boing 

In a neglected fossil: A vegetarian with bite

This is an artists' rendition of Pegomastax africanus, a 200-million-year-old dinosaur that is the subject of a new peer-reviewed research paper out this week in the journal ZooKeys.

It's a great face, and a fascinating species. Couple of things here that I think are worth highlighting:

First, despite the fang-y teeth Pegomastax africanus is sporting, the scientists who wrote the paper think this animal was actually a vegetarian. Or, at least, mostly a vegetarian. At LiveScience.com, the researchers told journalist Charles Q. Choi that the dinosaur had a parrot-like beak, its fangs weren't positioned well for cutting through meat, and its back teeth look like the kind of chompers plant-eaters use to slice through leaves and roughage. All of which suggest Pegomastax africanus ate more seeds, nuts, and fruit than flank steak.

The other cool thing has to do with when Pegomastax africanus was found. While the paper describing the fossil was published online today, the fossil itself was pulled out of the ground in the 1960s. In fact, the paper's main author — paleontologist Paul C. Sereno — first noticed the neglected fossil in 1983, and only recently got around to examining it more closely. Think of it this way, a successful dig might come out with lots of potentially cool rocks and fossils. The fact is that there are often more artifacts than there is time for one team to closely work with all the artifacts. The researchers who did the digging will focus on the ones that are most interesting to them. The rest get catalogued. Maybe the original researchers come back to them; maybe they don't. Maybe somebody else picks up the catalogued fossils; maybe it takes 50 years for that happen. But what this reminds us is that there are cool things waiting to be discovered in storage ... not just in the ground.

Read the full paper, which puts Pegomastax africanus into context as a member of a family of dinosaurs called heterodontosaurids.

3D domino fall illustrates the extinction of the dinosaurs

FlippyCat's animated 3D domino depiction of the comet-strike extinction of the dinosaurs is both poignant and exciting, and the setup/blooper-reel that follows the main action is a real nail-biter.

Also known as domino-saurs

This took 38.5 hours of setup time, over about 2 weeks.

This project contains several smaller projects that I have wanted to do for a long time...the earth being hit and spreading out (since I did this with flags), the eggs revealing something behind them, a fossil/skeleton and a domino-saur!

The Fall of the Dinosaurs (Thanks, Fipi Lele!)

Dinosaur

The correct answer is, of course, Ankylosaurus.

Why don't giraffes have necks as long as a brachiosaurus?

We think of giraffes as long-necked creatures, but compared to ancient sauropod dinosaurs (a family that includes the brachiosaurus and apatosaurus) even the longest-necked giraffe may as well be nicknamed "Stumpy". In a paper published online at arXiv site, two paleontologists analyzed the biology of sauropods in an attempt to figure out which features allowed the dinosaurs to grow necks six times longer than giraffes.

Turns out, there are some distinct differences — especially in the anatomical architecture of the vertebra closest to both animals' skulls — that really stand out. As this helpful slide shows, a sauropod with the vertebra of a giraffe would be in very bad shape, indeed.

This paper, by the authors' own account, began life "as a late-night discussion over a couple of beers", which means it's basically the paleontology equivalent of "Who would win in a fight: Darth Vader or Superman?" Which is awesome. Better yet, the paper is quite easy to read and the information is organized in a way that will probably make more sense to you than the typical scientific research paper. So dig in! It's worth it! Here's one short excerpt taken from a part discussing some of those differences in the cervical vertebra (the aforementioned vertebra closest to the skull):

Many groups of animals seem to be constrained as to the number of cervical vertebrae they can evolve. With the exceptions of sloths and sirenians, mammals are all limited to exactly seven cervicals; azdarchids are variously reported as having seven to nine cervical vertebrae, but never more; non-avian theropods do not seem to have exceeded the 13 or perhaps 14 cervicals of Neimongosaurus, with eleven or fewer being more typical.

By contrast, sauropods repeatedly increased the number of their cervical vertebrae, attaining as many as 19 in Mamenchisaurus hochuanensis. Modern swans have up to 25 cervical vertebrae, and as noted above the marine reptile Albertonectes had 76 cervical vertebrae. Multiplication of cervical vertebrae obviously contributes to neck elongation.

Read the full study at arXiv

Read a blog post about the study by one of the authors

Via Bora Zivkovic

Dinosaur Art: The World’s Greatest Paleoart -- exclusive excerpt

There are many forms of art –- still life, abstract, landscape, digital, cubism, marine, aviation, splatter, modern, photography etc but chances are, few people know what "paleoart" is. Well, simply put, it is the illustration of prehistoric life. Its practitioners combine an understanding of such broad disciplines as anatomy, geology and botany to open windows onto the ancient past, bringing to life as best they can organisms from across the planet’s four billion-year history. Everything from jellyfish to trilobites to mammoths to the first single-celled organisms – and, of course, dinosaurs.

Dinosaur Art is a collection -- and celebration -- of some the finest purveyors of paleoart. My primary reason in assembling this host of talent was to give them a voice. Generally their work is seen in books running the gamete from children’s to the most serious academic volume; from National Geographic’s website to illustrating a report on a BBC News feature. However, I couldn’t help but notice they rarely got to talk about themselves and their art. I hoped to rectify that and in doing so bring together a collection of amazing art that you don’t need to be a dinosaur enthusiast to enjoy -- although that helps!

Here’s a selection of some of my favorite images, from the book. -- Steve White, editor of Dinosaur Art

ASTEROID

Douglas Henderson

I love the lighting on this. What filmmakers call ‘the Magic Hour’ – beautiful twilight colours. It is also preludes the event that heralded the demise of the dinosaurs (and untold other species) – the impact of a massive object, in this case illustrated as an asteroid but possibly a comet or meteor, that slammed into the area of what is now Mexico’s Yucatan Peninsula, unleashing a global catastrophe.

Read the rest

Dinosaurs didn't only live in jungles

And they probably didn't drag their massive tails along the ground, either. At The Guardian, Dave Hone debunks some of the most common dinosaur myths. (Via Mark Becker)

Archaeopteryx (photo)

Retinal neuroscientist and photographer Bryan Jones sends in this gorgeous shot of an archaeopteryx fossil displayed in the Museum für Naturkunde in Berlin, Germany.

"As a biologist, seeing this fossil represents something of a pilgrimage," says Bryan, "[Visiting this museum is] a journey that all biologists would benefit from making."

Snip from his blog post:

This particular sample was found in the Solnhofen limestone formation in Bavaria and is the basis for the link between the dinosaurs and the feathered birds. Archaeopteryx itself is a feathered theropod, but is though of as the oldest documented bird dating back approximately 150 million years ago.

The fossil was found in 1874 by Jakob Niemeyer who traded it to Johann Dorr for a cow. Johann then sold the fossil to Ernst Haberlein for 2,000 German Marks. This sale was then turned around to the founder of Siemens, Werner von Siemens for 20,000 German Marks for the University of Berlin which has provided this specimen to scientists around the world as the best preserved specimen found with elegant feathers and an exquisitely preserved skull.

Zombie T-Rex tattoo


Megan, a cake designer, sports her wonderful zombie/T-Rex tattoo. It was inked by Jeff Addz at Generation X in Daytona Beach, Florida, who worked freehand.

Zombie T-Rex Tattoo Shoulder Tattoo (via Geekologie)

The descent of Petey

Bird and Moon comics offers this helpful illustration of how evolution screwed over the parakeet.

See the full comic, "Evolution Sucks"

Via David Ng

Tyrannosaurus bones seized

Joseph O'Leary writes: "U.S. officials on Friday seized the skeleton of a Tyrannosaurus dinosaur that Mongolia wants returned on suspicion that it was smuggled to the United States from the Gobi desert."

Bad news for people who love space, dinosaurs, and space dinosaurs

Back in April, chemist Ronald Breslow published a fairly routine research paper on the topic of molecular evolution. His paper concluded with a left turn into dire warnings about the possibility of dinosaurs on other planets. Sadly, this paper has now been recalled by the Journal of the American Chemical Society. Essentially, they unpublished it. The reason: The paper turned out to be a bit too similar to two other studies that Breslow had published previously. Yes, including the part about the space dinosaurs.

Stating the obvious

A 23-year-old Nebraska man, previously named Tyler Gold, shall henceforth be known as Tyrannosaurus Rex Joseph Gold. In sworn testimony, Tyrannosaurus Gold explained that his new name was simply "cooler" than the old one.

Commemorative Canadian quarters with glow-in-the-dark dino skeletons


Tim Hornyak writes about the new oversized Canadian commemorative quarters, which will feature glowing dinosaur skeletons, which is exactly what I've always wanted on all my money.

Made of cupronickel, the coin has a face value of 25 cents but is much larger than a regular Canuck quarter.

It shows an artist's rendering of Pachyrhinosaurus lakustai, a 4-ton, 26-foot dinosaur discovered in Alberta in 1972. It's the first in a four-coin series of photo-luminescent prehistoric creatures.

The mint says the skeleton can best be seen after the coin is exposed to sunlight, or to fluorescent or incandescent light for 30-60 seconds, adding that the luminescence won't fade with time.

Canada's newest coin glows in the dark (Thanks, Fipi Lele!)

The threat of intelligent space dinosaurs

Chirality is an interesting concept. The best way to explain it quickly is an analogy to being left-handed or right-handed. Molecules don't have hands, but they do have an inherent orientation that can be compared to having a dominant hand that you do most of your work with. Sugars are mostly right-handed. Amino acids: Left-handed.

But here's where things get weird: It doesn't have to be that way. In fact, given the randomness and chance through which evolution works, it would make more sense for there to be a lot more diversity in orientation.

All of this backstory is important so that I can tell you about the most hilarious non sequitur I've encountered in 2012.

Chemist Ronald Breslow has a new paper out in the Journal of the American Chemical Society, where he talks about why chirality might be the way it is. For the most part, his ideas are not unreasonable ones. Breslow thinks that life on Earth—and we're talking about life in its simplest forms, like molecules, not actual creatures—could have been "seeded" by material that fell to the planet on an asteroid. The idea is that, if the building blocks of life came from one place—a meteor fall—rather than arising and adapting here, it could explain why there's not the diversity of molecular "handedness" that we might otherwise expect to see.

In fact, in related news, there's another paper out suggesting that Earth could have paid that gift of life forward, with potentially microbe-and-molecule-laden rocks from here traveling far into interstellar space.

What makes Breslow's paper unique is the odd, brief, speculative tangent he gets into at the very end, a tangent which lead to me receiving a press release titled, "Could Advanced Dinosaurs Rule Other Planets?"

An
implication 
from
 this 
work 
is 
that
 elsewhere 
in
 the
 universe
 there
could be 
life
 forms
 based 
on 
D 
amino 
acids
 and 
L 
sugars,
 depending 
on 
the 
chirality
 of
circular
 polarized
 light
 in 
that 
sector
 of 
the 
universe
 or
 whatever 
other 
process 
operated 
to
 favor
 the
 L 
α‐methyl 
amino
 acids
 in 
the
 meteorites 
that 
have 
landed 
on
Earth. 

Such
 life
 forms
 could
 well
 be
 advanced
 versions
 of
 dinosaurs,
 if
 mammals
 did
 not
 have the 
good 
fortune 
to 
have
 the 
dinosaurs 
wiped 
out
 by 
an 
asteroidal
 collision,
as
on
 Earth. 
We
 would 
be
 better 
off 
not 
meeting 
them.

I suppose it's rather hard to argue with the basic thesis that we'd be better off not meeting a hyper-intelligent T. Rex. But at Dinosaur Tracking, Brian Switek attempts to explain why it's maybe not a great idea for chemists to randomly start pontificating on paleontology. In particular, the "rule" of the dinosaurs was not inevitable and was not dependent on the outcome of a single asteroid collision.

Prior to 250 million years ago, the synapsids—our ancestors and relatives—were the dominant creatures on land. But the apocalyptic extinction at the end of the Permian Period eliminated most synapsid lineages, in addition to many other forms of life. This clearing of the ecological slate is what allowed a different group of creatures to proliferate. Early archosaurs, or “ruling reptiles,” included the archaic forerunners of crocodiles, pterosaurs and dinosaurs, in addition to various groups now extinct, and these creatures dominated the Triassic.

Despite what has been traditionally told, though, the dinosaurian branch of the greater archosaur family tree didn’t immediately out-compete its neighbors. Eoraptor and Herrerasaurus were not the Triassic terrors they were cast as during the mid-1990s. For the most part, Triassic dinosaurs were small, rare, marginal parts of the ecosystems they inhabited. It was only after another mass extinction at the end of the Triassic, around 200 million years ago, that the competitors of early dinosaurs were removed and the reign of the dinosaurs truly began.

Image: Dinosaur, a Creative Commons Attribution Share-Alike (2.0) image from shvmoz's photostream

Steampunk Lego dino, with a backstory


Mark Stafford's "Steam-Dinos" is a Lego fantasy with its own backstory:

“A spiffing way to go to war I decided as we powered through the veldt. Mr. Roberson’s patented Triterrortops steam powered terrible lizard replica was performing above the expectations it has been set by His Majesties Royal Calvalry Corp. My report to the Generals will be that the vehicle has proved more then adequate to combat the clone-vat monstrosities of the Zimbab bio-shamens.(sic)

Also: it really walks!

Steam-Dinos-Rule (via Super Punch)

"My Favorite Museum Exhibit": An Archaeopteryx in Wyoming

"My Favorite Museum Exhibit" is a series of posts aimed at giving BoingBoing readers a chance to show off their favorite exhibits and specimens, preferably from museums that might go overlooked in the tourism pantheon. I'll be featuring posts in this series all week. Want to see them all? Check out the archive post. I'll update the full list there every morning.

For children of a certain nerdy persuasion, "archaeopteryx" is liable to be the first five-syllable word they ever pronounce. That's because archaeopteryx was a dinosaur with feathers, and wings. The first specimen was uncovered in 1861, and most of us probably grew up being told that archaeopteryx was the first bird. That isn't exactly true. Today, most paleontologists say it wasn't the ancestor of the birds we know, but rather a relative of that ancestor—a lower branch of the bird family tree that died away. That said, archaeopertyx is still incredibly important to our understanding of what the earliest birds might have been like, and archaeopteryx specimens are still incredibly rare, coveted things.

There are only 11 archaeopteryx specimens in the entire world, all hailing from one region of Germany. Most of them are in museums in Europe. But one archaeopteryx—in fact, one of the best-preserved of the bunch—resides in a tiny museum in Thermopolis, Wyoming. For the artistically inclined: Imagine running across a second, legit version of the Mona Lisa in a small museum in Wyoming with no crowds and no lines. In 2007, reader Mark Ryan and his brother got to see the Thermopolis archaeopteryx and took the photo of it posted here.

My brother and I had scheduled one of our regular "geo trips" out west and learned that the Wyoming Dinosaur Center, a cool museum in Thermopolis, Wyoming, had somehow acquired an Archaeopteryx specimen (one of only 10 in the world) and would be placing it on display starting the week we were going to be in Wyoming. Thermopolis is located about 2 hours southeast of Yellowstone National Park, but that didn't stop us from driving the 5 hours from Laramie just to see it. It was fantastic! They had the actual fossil on display (I've heard that most of the big museums only display casts of the Archaeopteryx specimens they own). There were no crowds, no lines, no special exhibit fees, just the "Thermopolis specimen" in a small window display in a hallway leading to the main exhibit hall.

According to Wikipedia, Thermopolis got its archaeopteryx as a donation from a Swiss collector who'd previously owned the specimen. It's also worth noting that the Wyoming Dinosaur Center seems to loan out its archaeopteryx to other museums quite frequently. So, if you're in the area, and you want to see an archaeopteryx, you should probably check with the museum before you get your hopes up.

How long have we known that dinosaurs were birds?

 

I spent most of my childhood with books about dinosaurs that played up the ancient beasties as overgrown lizards. The connection between dinosaurs and birds, while kind of flipping obvious once somebody points it out, was not much discussed among laypeople until I was in my teens. (That would be the 1990s, FYI.) 

But, among scientists, the idea of a dinosaur-bird relationship is nothing new. In fact, Thomas Henry Huxley was making that connection back in the 1860s. On the Dinosaur Tracking blog, Brian Switek tells the fascinating story of how Huxley started to realize that dinosaurs and birds were related—a discovery that's all the more impressive because he figured it out without the help of some of the key transitional fossils we have access to today.

Huxley did not suggest that birds were the direct descendants of dinosaurs. So much geologic time was unaccounted for, and so few dinosaurs were known, that Huxley could not point to any known fossil creature as the forerunner of birds. Instead he made his argument on anatomical grounds and removed the issue of time. Dinosaurs were proxies for what the actual bird ancestor would have been like, and flightless birds (such as the ostrich and emu) stood in for what Huxley thought was the most archaic bird type. (We now know that Huxley got this backwards—the earliest birds could fly, and flightless birds represent a secondary loss of that ability.) As Huxley went about collecting evidence for his case, though, he also gave dinosaurs an overhaul. They were not the bloated, plodding, rhinoceros-like creatures that Richard Owen had envisioned. Dinosaurs were more bird-like than anyone had imagined.

In October of 1867, Huxley met with John Philips, an English geologist and a curator of Oxford’s museum. As Huxley related in his 1870 paper “Further Evidence of the Affinity Between the Dinosaurian Reptiles and Birds,” Philips wanted to discuss details of marine reptiles called ichthyosaurs in his museum’s collection, but as he and Huxley made their way over toward the displays they stopped to look at the bones of the carnivorous dinosaur Megalosaurus. Then Huxley spotted something peculiar:

As Prof. Phillips directed my attention to one after the other of the precious relics, my eye was suddenly caught by what I had never before seen, namely, the complete pectoral arch of the great reptile, consisting of a scapula and a coracoid ankylosed together. Here was a tangle at once unravelled. The coracoid was totally different from the bone described by Cuvier, and by all subsequent anatomists, under that name. What then was the latter bone? Clearly, if it did not belong to the shoulder-girdle it must form a part of the pelvis; and, in the pelvis, the ilium at once suggested itself as the only possible homologue. Comparison with skeletons of reptiles and of birds, close at hand, showed it to be not only an ilium, but an ilium which, though peculiar in its form and proportions, was eminently ornithic in its chief peculiarities.

Earlier naturalists had made a mistake. They had misidentified the shoulder girdle, and one part of what was thought to be part of the shoulder was actually part of the hip. Another strange piece, previously thought to be a clavicle, also turned out to belong to the pelvis. This rearrangement immediately gave the dinosaur a more bird-like character.

If you look at the bottom of the image at the top of this post, you can see how much the re-arrangement of megalosaurus' parts changed our conception of what the whole creature looked like. Where other scientists saw a lumpy, obese crocodile, Thomas Henry Huxley saw a saber-toothed chicken.

Image: Ballista via CC

A dinosaur's teeth can be a map of its travels

Bones can tell you a lot about a creature, but there's much more they can't tell you. Bones are not behavior. We know what the skeletons of dinosaurs looked like. But there's a great deal about their appearance and behavior that we can only guess at.

Sometimes, though, bones can surprise you. Sometimes, they carry secrets locked inside. At Not Exactly Rocket Science, Ed Yong writes about a new study that's uncovered evidence about dinosaur behavior, using information stored in the dinosaurs' teeth. The paper suggests that the North American Camarasaurus had a seasonal migration.

Reptiles replace their teeth throughout their lives and the dinosaurs would have been no different. Whenever they drank, they incorporated oxygen atoms from the water into the enamel of their growing teeth. Different bodies of water contain different mixes of oxygen isotopes, and the dinosaurs’ enamel records a history of these blends. They were what they drank.

It’s easy enough to measure the levels of oxygen isotopes in dinosaur teeth, but you need something to compare that against. How could anyone possibly discern the levels of such isotopes in bodies of water that existed millions of years ago? Local rocks provide the answer. The oxygen also fuelled the growth of minerals like calcium carbonate (limestone), which preserve these ancient atoms just as dinosaur teeth do. If dinosaur enamel contains a different blend of oxygen to the surrounding carbonates, the place where the animal drank must be somewhere different from the place where it died.

Palaeontologists have used oxygen isotopes to infer all manner of dinosaur traits, from the fish-eating habits of spinosaurs to the hot body temperatures of sauropods to the chilly conditions endured by Chinese dinosaurs. These atoms have acted as menus and thermometers. Now, Fricke has turned them into maps.

What good is half a wing?

One of the most common arguments you'll hear against evolution (or, at least, one of the most common arguments I heard growing up amongst creationists) had to do with transitional forms. An eye is a valuable thing, this argument goes. But half an eye? That's just a disability.

Like many of the really common arguments against evolution, this one crumbles the minute you start to apply the slightest bit of fridge logic. Sure, half an eye is less useful than a full eye. (Or, more accurately, a clustering of light-sensitive cells don't have all the functionality of a modern eyeball and optic nerve system.) But, if most of the other creatures have no eyes, and you have a few light-sensitive cells, you've got an advantage. And an advantage is all it takes.

Now apply that to the evolution of birds. One of the cool things about this process is that it appears that feathers evolved before flight. In fact, feathers seems to have evolved rather independently of flight.

You might ask: What's the point of that? How are feathers an advantage if they can't help you fly? Is this just about looking pretty? Maybe. But on his blog, The Loom, Carl Zimmer presents another hypothesis. Feathers and wings, even without flight, might have given their owners a physical advantage over bare-skinned cousins. The birds in this video aren't flying. You can see that their feet don't leave the ground. But the act of flapping those feathers around helps them to walk up inclines that would otherwise be impassable walls. That's enough to escape a predator and live to breed another day. And it's also pretty damn astounding to watch. You'll find more footage at The Loom.

Video Link

Meet a paleontologist

What does a scientist do all day? The Smithsonian's Matthew Carrano explains his job as a paleontologist, what he hopes to discover, and why he made a career out of dinosaurs.

Dinosaur art

Fuck Yeah Dinosaur Art! is a great Tumblog specializing in pictures of classic Italian automobiles. Just kidding, it's about dinosaurs. Pictured above is an illustration of Benjamin Waterhouse Hawkins’s dinosaur models at Crystal Palace.

Dear Mr. Spielberg, please give the raptors feathers

"There had better be feathers on the raptors": Dino-blogger Brian Switek's open letter to Steven Spielberg upon the occasion of rumors about the possibility of a Jurassic Park 4.