After you drink some Scotch, there's usually a thin film of the liquor left clinging to the bottom and sides of the glass. If you leave it out overnight, it'll dry and be a pain to wash off in the morning. But the same dried booze leavings can also be the beginnings of some really lovely art.

Ernie Button takes photos of the waving, swirling patterns left behind on Scotch glasses. This one — part of a series called Vanishing Spirits — is a picture of glass that once held a nice measure of Balvenie.

The idea for this project occurred while putting a used Scotch glass into the dishwasher. I noted a film on the bottom of a glass and when I inspected closer, I noted these fine, lacey lines filling the bottom. What I found through some experimentation is that these patterns and images that can be seen are created with the small amount of Single-Malt Scotch left in a glass after most of it has been consumed. It only takes a very thin layer of Scotch to create; the alcohol dries and leaves the sediment in various patterns. It’s a little like snowflakes in that every time the Scotch dries, the glass yields different patterns and results. I have used different colored lights to add 'life' to the bottom of the glass, creating the illusion of landscape, terrestrial or extraterrestrial.

Interestingly, there was a recent article that was published in the Journal of Nature (I think) by Dr. Peter Yunker on the Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions i.e. how are coffee rings made. I contacted him to see if he could see any obvious connection between the two liquids and the rings / patterns they create. He got back to me and unfortunately could not explain what was happening with the Scotch.

That paper Button mentioned was published in 2011. It explores the physics of particles suspended in liquid — not just coffee, but lots of things. Turns out, if you put a drop of liquid on a solid surface, it will tend to dry in a circular shape. As it dries, anything suspended in the liquid will migrate to the outside of the circle. If you put a drop of coffee on a table and leave it to dry, what you'll get is a round spot ringed by a narrow band of dark coffee gunk.

Why does the gunk form a ring, instead of evenly covering the whole circle? Yunker's research showed that it has to do with the shape of the particles that make up the gunk.

Read the rest