Titanic lump of fat & wet-wipes dislodged from sewer

Noted tax-avoiders Thames Water's press release trumpets the news that they have excavated the largest ever "fatberg" -- a technical term denoting a huge, impacted lump of "festering food fat mixed with wet wipes" -- from a London sewer. Read the rest

Placebo buttons

The "close-door" button in the elevator, the crosswalk button at the intersection, even the thermostat in your office — there's a good chance that they're all placebos. Over the last 20 years or so, many (though, weirdly, not all) of these buttons have become technically useless, but are left in place both because it's expensive to replace existing equipment and because, psychologically, they still serve a purpose. Read the rest

The Great Sahara Sea

In the 1870s, a French geographer proposed digging a canal from the Mediterranean to flood a low-lying part of the Sahara Desert. He pitched it as good for business and good for local environments, writes Ron Miller at i09. But I can't help but think of Plagues and Pleasures of the Salton Sea — a documentary about the development, culture, and slow, ongoing destruction of a salty, inland sea that accidentally formed in southern California in the first part of the 20th century. Read the rest

This history of the car in L.A.

After living in L.A. for a year without owning a car — an experiment brought on by a lazy reaction to his car battery dying — Paleofuture's Matt Novak has written a fascinating piece about the history of Los Angeles transportation. It's a history that includes doomed monorails, oil derricks at Venice Beach, and a cameo by Roger Rabbit. Read the rest

Why is it so hard to make a phone call in emergency situations?

When bombs exploded at the Boston Marathon on Monday, my Facebook feed was immediately filled with urgent messages. I watched as my friends and family implored their friends and family in Boston to check in, and lamented the fact that nobody could seem to get a solid cell phone connection. Calls were made, but they got dropped. More often, they were never connected to begin with. There was even a rumor circulating that all cell phone service to the city had been switched off at the request of law enforcement.

That rumor turns out to not be true. But it is a fact that, whenever disaster strikes, it becomes difficult to reach the people you care about. Right at the moment when you really need to hear a familiar voice, you often can't. So what gives?

To find out why it's frequently so difficult to successfully place a call during emergencies, I spoke with Brough Turner, an entrepreneur, engineer, and writer who has been been working with phone systems (both wired and wireless) for 25 years. Turner helped me understand how the behind-the-scenes infrastructure of cell phones works, and why that infrastructure gets bogged down when lots of people are suddenly trying to make calls all at once from a single place. He says there are some things that can be done to fix this issue, but, ultimately, it's more complicated than just asking what the technology can and cannot do. In some ways, service failures like this are a price we pay for having a choice and not being subject to a total monopoly. Read the rest

There is a national competition for best-tasting tap water

Top contenders this year: Louisville and Fremont, Nebraska. Time to start filling out those brackets, water fans! Read the rest

World's largest tunnel boring machine lands in Seattle

Known affectionately as Bertha, this tunnel boring machine has the widest diameter of any boring machine ever built; 57.5 feet. It's being used to dig a highway tunnel under downtown Seattle and it just arrived there today after being shipped from Japan.

I feel this warrants your attention for two reasons: 1) If you live near Seattle, you can actually go get a look at this massive beast before it starts chewing its way through the city. If you like looking at giant machines (or know someone who does) now's your chance. She's coming into the Port of Seattle, Terminal 46, as you read this and there will be ample opportunities to get a look as the pieces are assembled and moved into the nearby launch pit. The Washington State Department of Transportation has suggestions on places to go to get a good view. 2) If, for some reason, you were looking for a new way to lose massive amounts of time on YouTube, Bertha (and boring machines, in general) can help with that. Here's a cutaway animation explaining how boring machines work. Here's a video of Big Becky, another boring machine, breaking through to the other side of a tunnel at Niagara Falls, Canada. (In fact, boring machine breakthrough videos are, in and of themselves, a mesmerizing genre.) And in this video, you can watch the massively long line of support equipment go by in the wake of a boring machine. Read the rest

How to: Demolish a truss bridge

Like the people cheering at about :25 into this video, I'm a sucker for dramatic explosions. This one comes from Texas, where the transportation department blew up an old bridge in the city of Marble Falls on March 17th. Also, apparently, it's warm enough in Texas that multiple gentlemen could watch a bridge explode from the comfort of their jet skis. Read the rest

In backup generators we trust?

It's normal for backup generators to fail. If we want a more reliable system, we'll have to change the way the grid works.

Salt water vs. infrastructure

Photo: Michael Tapp

Salt water is still winning. Unfortunately.

Remember back during the Fukushima crisis, when you heard a lot of talk about why the people trying to save the plant didn't want to use sea water to cool the reactors? There were a number of reasons for that (check out this interview Scientific American's Larry Greeenemeier did with a nuclear engineer), but one factor was the fact that salt water corrodes the heck out of metal. Pump it into a metal reactor unit and that unit won't be usable again.

Now, the corrosive power of salt water is in the news again — and this time it's ripping through New York City's underground network of subways and utility infrastructure. I like the short piece that Gizmodo's Patrick DiJusto put together, explaining why salt water in your subway is even worse than plain, old regular water:

When two different types of metal (or metal with two different components) are placed in water, they become a battery: the metal that is more reactive corrodes first, losing electrons and forming positive ions, which then go into water, while the less reactive metal becomes a cathode, absorbing those ions. This process happens much more vigorously when the water is electrically conductive, and salt water contains enough sodium and chloride ions to be 40 times more conductive than fresh water. (The chloride ion also easily penetrates the surface films of most metals, speeding corrosion even further.) Other dissolved metals in sea water, like magnesium or potassium, can cause spots of concentrated local corrosion.

Read the rest

Why do electric transformers explode?

Sixty milliseconds is fast. But sometimes, it's not fast enough. That's the gist of a great explainer by Cassie Rodenberg at Popular Mechanics, which answers the question, "Why do transformers explode?"

Before I link you over there, I want to add a quick reminder of what transformers actually are.

Although giant robots that turn into trucks do also explode from time to time, in this case we are talking about those cylindrical boxes that you see attached to electric poles. (Pesco posted a video of one exploding last night.) To understand what they do, you have to know the basics of the electric grid.

I find that it's easiest to picture the grid like a lazy river at a water park. That's because we aren't just talking about a bunch of wires, here. The grid is a circuit, just like the lazy river. Electricity has to flow along it from the power plant, to the customers, and back around to the power plant again. And, like a lazy river, the grid has to operate within certain limits. The electricity has to move at a constant speed (analogous to what engineers call frequency) and at a constant depth (analogous to voltage). This is where transformers come in. Read the rest

Blackout: What's wrong with the American grid

It began with a few small mistakes.

Around 12:15, on the afternoon of August 14, 2003, a software program that helps monitor how well the electric grid is working in the American Midwest shut itself down after after it started getting incorrect input data. The problem was quickly fixed. But nobody turned the program back on again.

A little over an hour later, one of the six coal-fired generators at the Eastlake Power Plant in Ohio shut down. An hour after that, the alarm and monitoring system in the control room of one of the nation’s largest electric conglomerates failed. It, too, was left turned off.

Those three unrelated things—two faulty monitoring programs and one generator outage—weren’t catastrophic, in and of themselves. But they would eventually help create one of the most widespread blackouts in history. By 4:15 pm, 256 power plants were offline and 55 million people in eight states and Canada were in the dark. The Northeast Blackout of 2003 ended up costing us between $4 billion and $10 billion. That’s “billion”, with a “B”.

But this is about more than mere bad luck. The real causes of the 2003 blackout were fixable problems, and the good news is that, since then, we’ve made great strides in fixing them. The bad news, say some grid experts, is that we’re still not doing a great job of preparing our electric infrastructure for the future. Read the rest

Where extreme weather and infrastructure meet, bad things happen

I just posted the first part of a two-part feature about America's electric grid and the risk of blackouts. If this is something you're interested in, though, there's a New York Times piece from last week that you should really read.

When we lose our access to electricity, there's usually more than one thing that went wrong. But, one of the common things that does go wrong, especially in recent years, is extreme weather. The way the grid was built, and the way we manage it, was set up with predictable weather and climate norms in mind. When those things start to drastically shift—as we've seen over the last 10 years—the grid becomes vulnerable.

And electricity isn't the only infrastructure affected.

On a single day this month here, a US Airways regional jet became stuck in asphalt that had softened in 100-degree temperatures, and a subway train derailed after the heat stretched the track so far that it kinked — inserting a sharp angle into a stretch that was supposed to be straight. In East Texas, heat and drought have had a startling effect on the clay-rich soils under highways, which “just shrink like crazy,” leading to “horrendous cracking,” said Tom Scullion, senior research engineer with the Texas Transportation Institute at Texas A&M University. In Northeastern and Midwestern states, he said, unusually high heat is causing highway sections to expand beyond their design limits, press against each other and “pop up,” creating jarring and even hazardous speed bumps.

The frequency of extreme weather is up over the past few years, and people who deal with infrastructure expect that to continue.

Read the rest

Meet the people who keep your lights on

Power was restored today in India, where more than 600 million people had been living without electricity for two days. That's good news, but it's left many Americans wondering whether our own electric grid is vulnerable.

Here's the good news: The North American electric grid is not likely to crash in the kind of catastrophic way we've just seen in India. I'm currently interviewing scientists about the weaknesses in our system and what's being done to fix them and will have more on that for you tomorrow or Friday.

In the meantime, I wanted to share a chapter from Before the Lights Go Out, my book about electric infrastructure and the future of energy. If you want to understand why our grid is weak, you first need to understand how it works. The key thing to know is this—at any given moment, in any given place, we must have an almost perfect balance between electric supply and electric demand. Fluctuations of even fractions of a percent can send parts of the system towards blackout.

More importantly, that careful balance does not manage itself. Across North America there are people working, 24-7, to make sure that your lights can turn on, your refrigerator runs, and your computer works. They're called grid controllers or system operators. Most utility customers have never heard of these guys, but we're all heavily dependent on them. They keep the grid alive and, in turn, they keep our lives functioning—all without the benefit of batteries or any kind of storage. Read the rest

India's in the dark, are we next?

670 million people—roughly half of India's population—has been without electricity for two days, following a massive blackout. The United States has a much more modern grid, but only nine years ago a blackout in the Northeast of this country cut power to 45 million. How does a huge blackout like that happen? What are we doing to prevent another one? I'll be on Southern California Public Radio's Madeline Brand Show this morning to talk about how America's electric grid works ... and doesn't work. The show starts at 9:00 Pacific time and I'll be on around the top of the hour. Read the rest

Blackout tracker tells you where the electric grid is down

The other day, someone asked me what the most surprising thing was that I learned while writing Before the Lights Go Out, my book about America's electric infrastructure and the future of energy. That's easy. The most surprising thing was definitely my realization of just how precarious our all-important grid system actually is.

There are two key things here. First, the grid doesn't have any storage. (At least, none to speak of.) Second, the grid has to operate within a very narrow window of technical specifications. At any given moment, there must be almost exactly as much electricity being produced as there is being consumed. If that balance is thrown off, by even a fraction of a percent, you start heading toward blackouts. There are people working 24-hours-a-day, 7-days-a-week, making sure that balance is maintained on a minute-by-minute basis.

That's a long way of explaining why I find Blackout Tracker so fascinating. Put together by Eaton, a company that makes products that help utilities manage different parts of the electric grid, this little web app shows you where the electric grid has recently failed, and why. The Blackout Tracker doesn't claim to include all blackouts, but it gives you an idea of the number of blackouts that happen, and the wide range of causes blackouts can have. For instance, in the picture above, you can see that Wichita, Kansas, had a blackout earlier this week that was related to a heatwave—hot weather meant more people turned on their air conditioners in the middle of the day, and, for whatever reason, there wasn't enough electrical supply available to meet that demand. Read the rest

The history of the U.S. electric grid

Where did our electric grid come from? It's a complicated question to answer. That's because the grid we have today didn't come from any single place. Instead, its origins are scattered, distributed geographically, technologically, and philosophically.

Different people built different parts of the grid in different ways and for different reasons. For many years—up until the 1970s in some places—individual towns and cities were independent grids that weren't connected to anything else around them. They functioned as little islands, incapable of reaching out for help when things went wrong.

More importantly, the grid wasn't designed. It evolved. Nobody ever really sat down and thought about how to build the best grid possible. The grid as we know it was assembled from bits and pieces, from mini-grids that were often built to be cheap and to go up quickly. Quality wasn't always priority number one.

I think the story of the electric grid in Appleton, Wisconsin—the second centralized electric grid in the world and the first hydroelectric power plant in the world—is a great example of all of this history in action.

Last month, I got to talk about Appleton at a Barnes and Noble in the Bay Area. The video of that talk went up on CSPAN Book TV yesterday. It's not available for embedding, unfortunately, but I encourage you to give it a watch. The talk covers not only history, but also the importance of writing about science online, rather than in print. You guys, as commenters at BoingBoing, have made my writing better—and for that you get a shout-out. Read the rest

More posts