Incredible winners of "Small World" microscope photography competition


This is the eye of a honey bee peppered with dandelion pollen, magnified at 120x.

The image, by Ralph Grimm, won Nikon's Small World 2015 Photomicrography Competition.

“In a way I feel as though this gives us a glimpse of the world through the eye of a bee,” says Grimm. “It’s a subject of great sculptural beauty, but also a warning- that we should stay connected to our planet, listen to the little creatures like bees, and find a way to protect the earth that we all call home.”

Below, the second, third, fourth, and fifth place winners.

Kristen Earle, Gabriel Billings, KC Huang & Justin Sonnenburg's "Mouse colon colonized with human microbiota (63x):"

Dr. Igor Siwanowicz's "Intake of a humped bladderwort (Utricularia gibba), a freshwater carnivorous plant (100x):"

Daniel H. Miller & Ethan S. Sokol's "Lab-grown human mammary gland organoid (100x):"

Dr. Giorgio Seano & Dr. Rakesh J. Jain's "Live imaging of perfused vasculature in a mouse brain with glioblastoma:"

Read the rest

Beautiful video inside a zebrafish embryo brain

Researchers borrowed optical techniques from astronomy and ophthalmology to dramatically improve imaging of biological samples. This video, created by scientists at the HHMI Janelia Farm Research Campus, shows neurons in the brain of a living zebrafish embryo. You can see the difference in quality when their new technique of "adaptive optics" is switched on and off.

According to physicist/engineer Eric Betzig who led the research, “The results are pretty eye-popping."

Yes. Yes they are.

(HHMI News, via National Geographic) Read the rest

Microscopic psychedelia

Photo: Courtesy of Pat Kysar

Fast Company collects 15 beautiful photos of bizarrely-colored microscopic worlds. Read the rest

The beginning of life

Sea urchin egg undergoing mitosis with fluorescent-tagged/stained DNA (blue), microtubules (green).

Cells divide. One single piece of life tugs itself apart and splits in two. It sounds like a purely destructive process, reminiscent of medieval woodcuts where the hands and feet of some unfortunate thief are tied to horses heading in opposite directions. But that's the macro world. On the micro scale, to split is to live. A dividing cell doesn't just rip itself to pieces. Instead, the cell first makes a copy of its genetic information. When the cell splits, what it's really doing is making a new home for that copy to live in. Make enough copies—and enough copies of the copies—and you eventually end up with a living creature.

Back in May, I took part in the Marine Biological Laboratory Science Journalism Fellowship, a 10-day program that gives journalists hands-on experience in what it means to be a scientist. The program is split into two tracks. As part of the environmental track, I went to the Harvard Forest, where nature is one giant laboratory. But, at the same time, other journalists were busy in a different sort of lab.

Steven Ashley is a contributing editor at Scientific American and writes for a host of other publications. He took part in the fellowship's biomedical track. Ashley and the other journalists fertilized the eggs of sea urchins and other small ocean creatures, and then used specialized biomedical microscopes and cell imaging software to create brilliant photos and mesmerizing movies of cell division and growing animals. Read the rest

Copepod up close

This image of a tiny crustacean called a copepod is one of the winners of this year's Nikon Small World photography competition. At Deep Sea News, blogger ParaSight explains how the photographer, scientist Jan Michels, got the shot:

That right there is one gorgeous copepod, one of the bigger and more important groups of planktonic crustaceans. It looks huge but is actually tiny; probably 1-2mm. You can see how much richer and more detailed the image is (although the colour is stained flouresence, not natural). That particular image uses a technique called confocal microscopy, which uses lasers and clever optics to achieve great depth of field (where everything is in focus).

Read the rest