Scientific research in a forest

I spent Friday, Saturday, and Sunday in the Harvard Forest—the most-studied forest in the world. It's an interesting place, with a complicated history. Originally forest, it was clear-cut in the decades following European settlement. By 1830, less than 90% of this part of Massachusetts had any forest left. But that trend had already begun to reverse itself by 1850, spurred by urbanization and cheaper, more-efficient farming in the "West" (i.e., Ohio).

What is now the Harvard Forest was farmland for many years. Then it was used for tree plantations. Then it became forest again, studied first by Harvard University's forestry program in the early 20th century, and then by ecologists and other environmental scientists beginning in the 1980s. Today, these 3,500 acres are home to dozens of individual studies and long-term, interdisciplinary projects led by scientists from more than 15 universities and institutions.

This particular study, led by Dr. Jerry Melillo of the Marine Biological Laboratory, is studying the nitrogen and carbon cycles of forests, and how those cycles are affected by rising soil temperatures. They're trying to understand how climate change will affect the growth of wild plants, and how it will affect those plants' ability to absorb and store carbon dioxide. I'll get more in-depth on this study later. Right now, I thought that this site offered a really great view of what a research forest looks like—it's a chance to see detail-oriented science and wild nature interacting and overlapping.

Read the rest

Twins: Nature, nurture, and epigenetics

National Geographic has a really interesting story on what we can learn about human biology and human culture from studying the lives of twins. (Last week, Mark blogged about some of the photos in the story.) The story explains the chance beginnings of the now-massive Minnesota Study of Twins Reared Apart; introduces you to twin girls from China who were adopted by two different Canadian families that now work to keep the girls in each other's lives; and delves into what we know and don't know about why some identical twins are different from each other in very conspicuous ways.

One example of this last bit is the story of Sam and John, identical twin brothers. Both are on the autism spectrum, but they appear to be on entirely different parts of that spectrum, with John experiencing much more severe symptoms that led the boy's parents to enroll him in a special school. Why would identical twins, raised in the same family, have such an obvious difference in the expression of characteristics that are probably mostly inherited? That's where epigenetics comes in.

A study of twins in California last year suggested that experiences in the womb and first year of life can have a major impact. John's parents wonder if that was the case with him. Born with a congenital heart defect, he underwent surgery at three and a half months, then was given powerful drugs to battle an infection. "For the first six months, John's environment was radically different than Sam's," his father says.

Read the rest

The psychopathic neurobiologist

James Fallon studies the brain. Then he studied his own, and found out that he has the same brain malfunctions as psychopathic serial killers. What happened next is a fascinating story about the brain, the mind, and the dueling influences of nature and nurture. Read the rest