Submit a link Features Reviews Podcasts Video Forums More ▾

Snow vehicle, 1924

This film demonstrates a concept snow vehicle made in 1924 by Armstead Snow Motors in Michigan. "The concept is applied to a Fordson tractor and a Chevrolet automobile." Here's the patent! (via Accidental Mysteries)

Frosty eats raccoon: the story of the carnivorous snowman

Here’s a great twist on the classic snowman theme: a bloody, carnivorous Frosty caught in the act of devouring a raccoon. It’s been an unusually cold and snowy winter in Cincinnati so it’s good to see that someone is making the most of it. I was driving my daughter home from a friend’s house when we saw it. Of course, I had to go back and get a picture, which I posted to my Instagram and Twitter feeds. When David asked about posting it to Boing Boing, I was happy but curiously apprehensive. Even though this guy sits in plain view of a busy intersection, I had walked right up to him to make the picture and now I was beginning to feel like I should have asked permission because I had ventured onto private property.

When I worked at a newspaper, we had clear rules for when you needed permission to publish a photo. If the subject of the photo was at public event (baseball game), or in a public place (park) or visible from a public place (street), it was understood that there was no expectation of privacy. An obvious exception would be a photo taken through the window of a private home even if taken from a public street. If you entered private property to make a picture, you got permission.

I find it interesting that I hadn’t thought about these issues with regard to social media. I haven’t shot professionally for a long time but I post regularly to Instagram and share my pictures on Twitter, Flickr and Facebook. I’m under no illusion that those sites are private but for whatever reason, they feel more personal. Boing Boing, on the other hand, feels like having your picture on Page 1 of the morning paper. Maybe that’s why I felt the need to go back and ask permission.

I’m glad I did because the creator of this fearsome snow monster is a pretty cool guy.

Read the rest

DIY snowflake photography with old point-and-shoot

Alexey kljatov 14

11044822583 cf9b4bd45c o

Russian photographer takes absolutely stunning photos of snowflakes on his balcony using an old point-and-shoot camera with a vintage USSR Helios lens mounted in reverse for extreme macro functionality. He describes his hacked rig and technique here: "Snowflakes, night city and other things"

More photos at Kljatov's Flickr stream: ChaoticMind75 (Thanks, Bob Pescovitz!)

Snowflake electron microscope photos


Twisted Sifter has a great gallery of snowflake and ice crystal electron microscope photos. At this level of magnification, the ice looks like metal that has been machined by space aliens.

25 Microscopic Images of Snow Crystals

Projecting the Lorax on a blizzard

As readers of Pirate Cinema will know, I love pointing powerful projectors at distant, public objects, because there's something awesome about watching YouTube videos against the side of an office-building opposite one's 15th-storey hotel room. But I never suspected how wondrous the results would be if I shone the movie-light into a blizzard, as Redditor bmaffitt did three days ago.

I pointed a video projector into the blizzard tonight, and took pictures. The results were... unexpected. (imgur.com) [Reddit]

Projector Snow [Flickr]

(via Hacker News)

Timelapse of Boston's nemopocalypse

jere7my sez, "I pointed my camera out my dining room window for 30 hours of Nemo in Boston, from the start of precipitation on Friday to the end of Saturday's cleanup, and condensed it all down to a minute. Enjoy this wintry timelapse! That's me waving at the camera for a few frames around 0:33."

Nemo Timelapse

"Knock knock." Who's there? "Snow."

Josh Fitzpatrick, meteorologist with WSAZ TV, posts this photo (don't know who took it), with this factoid: "The deepest snow with the #blizzard of 2013 was 40" inches at Trumbull, CT! 7' foot drifts. "

Read the rest

Snow art made with snowshoes

NewImage

Simon Beck creates stunningly intricate patterns in the snow by walking (carefully) in raquettes à neige (snowshoes). "On average they take about 10 hours to really do it properly, some are a little unfinished, if my feet get cold or hurt too much," Beck says. "The setting out is done using handheld orienteering compass and distance determination using pace counting or measuring tape. Curves are either judged or arcs of circle using a clothes line attached to an anchor at the centre. Designs are chosen from the world of geometry or 'crop circles.'" Simon Beck snow art (via Juxtapoz)

HOWTO make a bulletproof snow-fort

Pykrete is a WWII-era experimental material made by mixing wood pulp with ice. It's easy to make, easy to work with, and it's bulletproof:

If so, we’d like to humbly suggest that you consider pykrete for all your snow fort construction needs. Pykrete is a composite material made of a mixture of wood pulp and ice. Named for its inventor Geoffrey Pyke, pykrete was an experimental material developed during the mad science heyday of World War II.

At a time when steel was starting to run into short supply, Pyke looked at ice, a material that can be formed for a fraction of the energy cost of steel, as a potential building tool. Early experiments ran into problems — ice is prone to being brittle — but they came across research that showed that if you mixed in cellulose with pure water, that the resulting stuff, when frozen, turned out to be quite durable.

How durable? Let’s put it this way: Would you like a snow fort that is bullet-proof?

How to Make an Indestructible Snow Fort — With Pykrete [Tim Maly/Wired]

How to: Instantly turn water into snow

Chalk this up under "Blogs You Ought to be Following". The Tumblr Fuck Yeah Fluid Dynamics is a great place to find succinct, clear explanations of the forces that make things flow. In particular, they're fantastic at posting explanations behind things you see in YouTube videos, both viral and obscure.

The video above — in which a nice Siberian guy tosses boiling water off his balcony and creates a cloud of snow — has been making the rounds recently. Here's how Fuck Yeah Fluid Dynamics explains it:

Several effects are going on here. The first thing to understand is how heat is transferred between objects or fluids of differing temperatures. The rate at which heat is transferred depends on the temperature difference between the air and the water; the larger that temperature difference is the faster heat is transferred. However, as that temperature difference decreases, so does the rate of heat transfer. So even though hot water will initially lose heat very quickly to its surroundings, water that is initially cold will still reach equilibrium with the cold air faster. Therefore, all things being equal, hot water does not freeze faster than cold water, as one might suspect from the video.

The key to the hot water’s fast-freeze here is not just the large temperature difference, though. It’s the fact that the water is being tossed ...

Read the rest

How snowflakes get their shapes

Not all snowflakes are unique in their shape. There's one fact for you.

And here's another: The shape of snowflakes — whether individually distinct or mass-production common — is determined by chemistry. Specifically, the shape is a function of the temperatures and meteorological conditions the snowflakes are exposed to as they form and the way those factors affect the growth of ice crystals.

This short video from Bytesize Science will give you a nice overview of snowflake production and will help you understand why some snowflakes are unique, and why others aren't.

Here is a giant snow blower

Just look at it.

Thanks to Aaron Bockelie for posting this in the comments from a post earlier this week. And to Tom Levenson for pointing it out to me!

Alaskan town has 176 inches of snow on the ground

Hey, guys, I figured out where all of Minnesota's winter snow went. It's in Cordova, Alaska.

Since Nov. 1, storms have dropped 176 inches of snow and more than 44 inches of rain on the town, about 150 miles southwest of Anchorage.

Temperatures warmed overnight, and residents awoke to standing water because of stopped-up drains. The rain also made the existing snow heavier.

The warmer temperatures - about 35 degrees midday Wednesday - brought another hazard to the Prince William Sound community of 2,200 people: avalanche danger.

There's one road leading out, and it was closed though it could be opened for emergency vehicles.

"We have the National Guard right now using the standard shovel, and they're getting pretty trashed every day - not the shovels but the Guardsmen themselves," he said.

That's from an AP story in the San Francisco Chronicle. Read the whole thing to learn about the intricacies of snow shovel design, and why a standard shovel just ain't enough to deal with 176 inches of snow. Better ones are being airlifted in.

The image above—taken by the Alaska Division of Homeland Security and Emergency Management—gives you an idea of what it's like to dig out of a snow pack like this. I will admit, as much as I realize what a disaster it would be to live in Cordova, Alaska right now, there is a part of me (the part that is approximately 5 years old) that just looks at this photo and thinks, "I will build the most AWESOME fort EVER!"

Time-lapse video of lab-grown snowflakes

Back in December, researchers at Caltech posted a research paper to arXiv that attempts to explain why the shape and structure of snowflakes change significantly depending on relatively small shifts in temperature.

In order to study this, they had to grow snowflakes in laboratory conditions. It was not an easy thing to figure out how to do. On his Snowcrystals page, physicist Kenneth G. Libbrecht show you how it's done.

There are many ways to grow snowflakes, but my favorite starts with something called a vapor diffusion chamber. This is essentially nothing more than an insulated box that is kept cold on the bottom (say -40C) and hot on the top (say +40C). A source of water is placed at the top, and water vapor diffuses down through the box, producing supersaturated air. The cold, supersatured air at the center of the chamber is ideal for growing ice crystals.

While working with this diffusion chamber, we rediscovered a wonderful technique for growing synthetic snow crystals that was first published in 1963 by meteorologist Basil Mason and collaborators [1]. One starts by putting a wire into the diffusion chamber from below, so that small ice crystals begin growing on the wire's tip. Then apply a high voltage to the wire, say +2000 volts, and voila -- slender ice needles begin growing from the wire.

Video Link