New NASA imagery reveals extent of tar on Santa Barbara beaches left by Refugio oil spill

AVIRIS-NG red-green-blue (visible) aerial image of the Refugio Incident oil spill, showing oil on the water and on nearby Santa Barbara Channel beaches. NASA/JPL-Caltech


AVIRIS-NG red-green-blue aerial image of Refugio Incident oil spill, showing oil on the water and nearby beaches. NASA/JPL-Caltech

When an oil pipeline ruptured near Santa Barbara, California, on May 19, it leaked 105,000 barrels of crude oil onto Refugio State Beach, and another 21,000 gallons into the Pacific Ocean in the north Santa Barbara Channel. The Refugio Incident created an environmental nightmare for local beaches and wildlife, which continues still.

NASA today released new images of the oil spill, captured with the help of an airborne instrument developed at the Jet Propulsion Laboratory in Pasadena to study the spill and test the ability of imaging spectroscopy to map tar on area beaches.

Members of the AVIRIS-NG team, including citizen scientists, take spectral measurements of tar on a beach affected by the oil spill. The measurements were used to validate the AVIRIS-NG aerial data. Photo by Mike Glick, citizen scientist.


Members of the AVIRIS-NG team, including citizen scientists, take spectral measurements of tar on a beach affected by the oil spill. The measurements were used to validate the AVIRIS-NG aerial data. Photo by Mike Glick, citizen scientist.

From the NASA news release today:

The JPL-built Airborne Visible Infrared Imaging Spectrometer, Next Generation (AVIRIS-NG) instrument uses spectroscopic measurement of energy reflected from Earth's surface to determine surface properties. In this case, AVIRIS-NG focused on applying imaging spectroscopy to the problem of accurately mapping the presence of oil-derived tar balls on the beaches, using direct, on-the-ground observations to verify the remote sensing data. AVIRIS-NG can capture spectral imagery that is commonly used to map ecosystems, minerals, land use and trace gases.

Prior to the flights, a team of scientists led by Principal Investigator Ira Leifer of Bubbleology Research International, Solvang, California, collected tar balls on an affected beach and analyzed them in a laboratory operated for the Department of Energy. The infrared spectral analysis confirmed the presence of unique petroleum hydrocarbon spectral features that would allow diagnostic mapping of beach tar from the air or space.

To support the AVIRIS-NG overflights of the larger region, the team deployed to a beach affected by tar from the spill to map beach tar and collect surface spectra, assisted by citizen scientists. They mapped a 220-foot (67-meter) span of the beach in detail, noting locations and coverage of tar on the beach. AVIRIS-NG then flew over the beach. Tar was detected successfully in the AVIRIS-NG spectral data, validating the effectiveness of this advanced remote measurement technique. The beach tar map was subsequently forwarded to the Incident Command for the Refugio Incident and was incorporated into the response's daily shoreline cleanup and assessment technique, also known as SCAT.

SCAT is a critical response component to an oil spill, but is highly subjective, qualitative and labor intensive. Applying remote sensing techniques to beach tar mapping in support of oil spill response is a breakthrough that promises to transform shoreline cleanup and assessment techniques by providing robust, rapid and repeatable maps at a resolution and fidelity not currently achievable. These maps can guide local, state, and federal stakeholders in assessing impacts to beaches and in restoring and recovering degraded, damaged or destroyed ecosystems and habitats in the environment.

"Mapping tar on beaches using high-resolution imaging spectroscopy techniques that can identify tar of this type has never been done before, and is a natural extension of oil-on-water remote sensing," said Leifer. "NASA deployed AVIRIS-NG to the scene during the first week of the incident, collect ing timely data during the initial spill phases and contributing to the response."

"NASA is keenly interested in fostering development of new operational remote sensing technologies that improve disaster response for application by federal responders," said David Green, NASA Disasters Program manager at NASA headquarters in Washington. "The AVIRIS-NG deployment is an example of the proactive disaster response efforts NASA supports, including oil spills within the FOSTERRS interagency working group." FOSTERRS stands for the NASA-led Federal Oil Spill Team for Emergency Response Remote Sensing. The group brings together remote sensing expertise from a range of governmental agencies to support oil spill responses.

This effort built on a pioneering NASA campaign that assisted during the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 under science principal investigator Leifer. Then, AVIRIS imagery was processed to provide the first-ever maps of oil-on-water thickness, developed by a large multi-agency team. The current effort sought to leverage the greatly improved performance of AVIRIS-NG to map oil as tar on beaches.

Leifer coordinated the current Refugio Incident flights in support of NASA's Disasters Program. Also participating in the team was John DiBenedetto of Special Technology Laboratories, a U.S. Department of Energy contract lab, in collaboration with scientists from the National Oceanic and Atmospheric Administration.

For more information on AVIRIS NG, visit airbornescience.jpl.nasa.gov.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA's Earth science activities, visit nasa.gov/earth.