A favorite kitchen chemistry (and physics) experiment of kids (and adults), Ooblek is the weird result of mixing cornstarch with water. Now, MIT engineers have developed a mathematical model that can predict and simulate how the non-Newtonian fluid switches between liquid and solid depending on the pressure applied to it. From MIT News:
Aside from predicting what the stuff might do in the hands of toddlers, the new model can be useful in predicting how oobleck and other solutions of ultrafine particles might behave for military and industrial applications. Could an oobleck-like substance fill highway potholes and temporarily harden as a car drives over it? Or perhaps the slurry could pad the lining of bulletproof vests, morphing briefly into an added shield against sudden impacts. With the team's new oobleck model, designers and engineers can start to explore such possibilities.
"It's a simple material to make — you go to the grocery store, buy cornstarch, then turn on your faucet," says Ken Kamrin, associate professor of mechanical engineering at MIT. "But it turns out the rules that govern how this material flows are very nuanced…"
Kamrin's primary work focuses on characterizing the flow of granular material such as sand. Over the years, he's developed a mathematical model that accurately predicts the flow of dry grains under a number of different conditions and environments. When (grad student Aaron) Baumgarten joined the group, the researchers started work on a model to describe how saturated wet sand moves. It was around this time that Kamrin and Baumgarten saw a scientific talk on oobleck.
"We'd seen this talk, and we had a lengthy debate over what is oobleck, and how is it different from wet sand," Kamrin says. "After some vigorous back and forth with Aaron, he decided to see if we could turn this wet sand model into one for oobleck."
"A general constitutive model for dense, fine-particle suspensions validated in many geometries" (PNAS)