DNA for data storage

Researchers have successfully stored information in synthetic DNA and then sequenced the DNA to read the data. Nick Goldman and his colleagues from the European Bioinformatics Institute (EBI) encoded all of Shakespeare's sonnets, an audio clip of Martin Luther King's "I have a dream" speech, Watson and Crick's paper on DNA's structure, a photo of the EBI, and an explanation of their data conversion technique. Last year, Harvard molecular geneticist George Church encoded a book he had written in DNA, but EBI's breakthroughs are in the way the data is encoded and its error-correction. From the abstract of their scientific paper published at Nature:
We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information10 of 5.2 × 106 bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade.
"Synthetic double-helix faithfully stores Shakespeare's sonnets" (Thanks, Mike Pescovitz!)