Intel x86s hide another CPU that can take over your machine (you can't audit it)
Recent Intel x86 processors implement a secret, powerful control mechanism that runs on a separate chip that no one is allowed to audit or examine. When these are eventually compromised, they'll expose all affected systems to nearly unkillable, undetectable rootkit attacks. I've made it my mission to open up this system and make free, open replacements, before it's too late.
The Intel Management Engine (ME) is a subsystem composed of a special 32-bit ARC microprocessor that's physically located inside the chipset. It is an extra general purpose computer running a firmware blob that is sold as a management system for big enterprise deployments.
When you purchase your system with a mainboard and Intel x86 CPU, you are also buying this hardware add-on: an extra computer that controls the main CPU. This extra computer runs completely out-of-band with the main x86 CPU meaning that it can function totally independently even when your main CPU is in a low power state like S3 (suspend).
On some chipsets, the firmware running on the ME implements a system called Intel's Active Management Technology (AMT). This is entirely transparent to the operating system, which means that this extra computer can do its job regardless of which operating system is installed and running on the main CPU.
The purpose of AMT is to provide a way to manage computers remotely (this is similar to an older system called "Intelligent Platform Management Interface" or IPMI, but more powerful). To achieve this task, the ME is capable of accessing any memory region without the main x86 CPU knowing about the existence of these accesses. It also runs a TCP/IP server on your network interface and packets entering and leaving your machine on certain ports bypass any firewall running on your system.
While AMT can be a great value-add, it has several troubling disadvantages. ME is classified by security researchers as "Ring -3". Rings of security can be defined as layers of security that affect particular parts of a system, with a smaller ring number corresponding to an area closer to the hardware. For example, Ring 3 threats are defined as security threats that manifest in “userspace” mode. Ring 0 threats occur in “kernel” level, Ring -1 threats occur in a “hypervisor” level, one level lower than the kernel, while Ring -2 threats occur in a special CPU mode called “SMM” mode. SMM stands for System-Management-Mode, a special mode that Intel CPUs can be put into that runs a separately defined chunk of code. If attackers can modify the SMM code and trigger the mode, they can get arbitrary execution of code on a CPU.
Although the ME firmware is cryptographically protected with RSA 2048, researchers have been able to exploit weaknesses in the ME firmware and take partial control of the ME on early models. This makes ME a huge security loophole, and it has been called a very powerful rootkit mechanism. Once a system is compromised by a rootkit, attackers can gain administration access and undetectably attack the computer.
There is no way for the x86 firmware or operating system to disable ME permanently. Intel keeps most details about ME absolutely secret. There is absolutely no way for the main CPU to tell if the ME on a system has been compromised, and no way to "heal" a compromised ME. There is also no way to know if malicious entities have been able to compromise ME and infect systems.
A large portion of ME's security model is "security through obscurity", a practice that many researchers view as the worst type of security. If ME's secrets are compromised (and they will eventually be compromised by either researchers or malicious entities), then the entire ME security model will crumble, exposing every recent Intel system to the worst rootkits imaginable.
Around 2013, we figured out some of the nitty-gritty details regarding how the ME firmware was packaged up into a blob. The ME firmware is verified by a secret boot ROM embedded in the chipset that first checks that the SHA256 checksum of the public key matches the one from the factory, and then verifies the RSA signature of the firmware payload by recalculating it and comparing to the stored signature. This means that there is no obvious way to bypass the signature checking, since the checking is done by code stored in a ROM buried in silicon, even though we have the public key and signature. However, there still might be an exploitable bug in the ROM bootloader.
We also discovered that the critical parts of the ME firmware are stored in a non-standard compressed format, which gets decompressed by a special hardware decompressor. My initial attempts to brute-force the decompression scheme failed miserably. Another group had better success and they have now completed a working decompression routine for all versions of ME up to but not including version 11. Kudos to them!
Our goal is to implement a completely libre software replacement for ME. When the implementation of such a security-critical component is available for scrutiny, it will be peer-reviewed and audited by persons around the world. This generally results in stronger security.
Our goal isn't to replace Intel's ME, but to provide a minimal libre alternative firmware for users who choose to use it. Unfortunately, since the firmware is protected by RSA 2048, we currently have no way to execute our own code on the ME hardware because it fails validation. We have no way to move forward, even if we wanted to.
This is scary. Most digital handcuffs are so easy to break that it's not an issue how to break it, more so an issue of the penalty one might face for actually breaking it. In this case, it is impossible to break unless you have a way to factorize semi-primes with approximately 600 decimal digits in a reasonable time. (At the time of writing this article, pretty much impossible in one human lifetime for anyone with the biggest supercomputer).
So in conclusion, Intel has so far stopped anyone from tinkering with ME firmware in practice, and there is no way to trust the code running on your ME because it's proprietary. So we are back to the days of the Sony Playstation, but for general purpose computers based on Intel x86. Matters only get worse now that Intel has squeezed a whole system into a chip, SoCs. We have no physical separation between the components that we can trust and the untrusted ME components, so we can't even cut them off the mainboard anymore.
Below is a highly simplified diagram describing how some of the older ME hardware fits into a system:
Personally, I would like if my ME only did the most basic task it was designed for, set up the bus clocks, and then shut off. This way, it would never be able to talk out of the network card with some of my personal data. I refer to the ME as the Damagement Engine, since it is a hardware add-on that damages your security.
(Banner: PIC12C508-HD, ZeptoBars, CC-BY; Diagram, CC0)
100 million VWs can be unlocked with a $40 cracker (and other cars aren't much better)
In Lock It and Still Lose It—On the (In)Security of Automotive Remote Keyless Entry Systems, a paper given at the current Usenix Security conference in Austin, researchers with a proven track record of uncovering serious defects in automotive keyless entry and ignition systems revealed a technique for unlocking over 100,000 million Volkswagen cars, using $40 […]
READ THE REST
Your medical data: misappropriated by health-tech companies, off-limits to you
Backchannel’s package on medical data and the health-tech industry profiles three people who were able to shake loose their own data and make real improvements in their lives with it: Marie Moe, who discovered that the reason she was having terrifying cardiac episodes was out-of-date firmware on her pacemaker; Steven Keating, who created a website […]
READ THE REST
Return of Dieselgate: 3 more hidden programs found in VW Audi/Porsche firmware
The German newspaper Bild am Sonntag says that US investigators have discovered three more hidden cheat apps in a Volkswagen product line: these ones were discovered in 3-liter Audi diesels.
READ THE REST
Don’t be that friend at the music festival—be the festival mom with this survival kit instead
You won’t want to hit another music festival without these essentials. Read on to find out what we’re packing for the final festivals of the year.This Smart Charger Always Knows Where The Car Is ParkedIn addition to charging your phone, the Zus Smart Car Charger and Locator ($29.99) helps you locate your car no matter […]
READ THE REST
Even Cheech and Chong would be impressed with this “Happy Kit”
When the mood strikes you and you’re looking to light up, you shouldn’t have to hunt around for all the things you need: your pipe, your grinder, your favorite munchies, and so on. And with the Happy Kit, you won’t have to.This compact black case houses everything you need, including a grinder, a glass pipe, […]
READ THE REST
Kiss your boring job goodbye—you’re about to learn how to program
Everybody knows that if you want to earn the big bucks these days, you need to learn how to code. Luckily, you don’t even need to spend thousands on grad school to make coding your career. The Entry-Level Python & JavaScript Programming Bundle is the easiest way to get started in programming in two of […]
