Scientists create new biohybrid robots that are definitely not cyborg zombie mice

A group of scientists just created a mobile cybernetic entity using robotics and the manipulated muscle mass of a dead animal. Neat! Here's the abstract from the paper, titled "Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics," which was recently published in the journal Science Robotics:

Bioengineering approaches that combine living cellular components with three-dimensional scaffolds to generate motion can be used to develop a new generation of miniature robots. Integrating on-board electronics and remote control in these biological machines will enable various applications across engineering, biology, and medicine. Here, we present hybrid bioelectronic robots equipped with battery-free and microinorganic light-emitting diodes for wireless control and real-time communication. Centimeter-scale walking robots were computationally designed and optimized to host on-board optoelectronics with independent stimulation of multiple optogenetic skeletal muscles, achieving remote command of walking, turning, plowing, and transport functions both at individual and collective levels. This work paves the way toward a class of biohybrid machines able to combine biological actuation and sensing with on-board computing.

tl;dr — they're cyborg zombie mice.

Here's a little more detail, courtesy of Inverse:

The new biohybrid robots combine three major components: mousemuscle cells, soft 3D-printed structures called scaffolds, and wireless LED control chips. The LED chips use light to stimulate the mouse tissue. As the muscles contract, they contort the scaffold which, thanks to its asymmetrical design, spurs the robot to "walk" forward.

Using this approach, the robots reached speeds of up to .83 millimeters per second — not exactly NASCAR material, but still the fastest speed ever achieved by this type of biohybrid.

The design also frees the robot from wires or clunky batteries, so it's more mobile than its predecessors. "You can basically beam energy into the chip," says Gazzola, "so that means that you don't need power onboard."

Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics [Yongdeok Kim, Yiyuan Yang, Xiaotian Zhang, Zhengwei Li, Abraham Vázquez-Guardado, Insu Park, Jiaojiao Wang, Andrew I. Efimov, Zhi Dou, Yue Wang, Junehu Park, Haiwen Luan, Xinchen Ni, Yun Seong Kim, Janice Baek, Joshua Jaehyung Park, Zhaoquian Xie, Hangbo Zhao, Mattie Gazzola, John A Rogers, and Rashid Bashir /Science Robotics]