Wondrous winners of Nikon's "Small World in Motion" microscopic video contest

Above is a "Zebrafish embryo growing its elaborate sensory nervous system (visualized over 16 hours of development)" captured by Elizabeth Haynes of the University of Wisconsin - Madison, and colleagues. This wondrous clip is the winning entry of Nikon's "Small World in Motion" microscopic video contest revealing dynamic weirdness and beauty at the tiniest scales. Below, second place, Dr. Miguel Bandres and Anatoly Patsyk (Technion - Israel Institute of Technology), "Laser propagating inside a soap membrane;" and third place, "Polychaete worm of the Syllidae family," by Rafael Martín-Ledo of the Conserjería Educación Gobierno de Cantabria.

See more: Small World 2018 World In Motion Competition

Read the rest

Under a microscope, a riotous rush of color and texture

The Miniglobelet series by Beauty of Science shows all the wondrous math and physics occuring at the micrscopic level as crystals form, chemicals combine, and new forms take shape. Read the rest

Watch how gross makeup looks at 1600x magnification

YouTuber Tina Yong grabbed an inexpensive digital microscopic camera and shot some extreme closeups of her makeup, to horrifying results. Read the rest

Amazing video of cells moving within an organism

Scientists combined multiple imaging technologies to deliver an unprecedented 3D view inside the body of crawling cancer cells, spinal cord circuit development, and immune cells traveling within a zebrafish (above). Nobel laureate Eric Betzig and his colleagues at the Howard Hughes Medical Institute integrate a technology called lattice light sheet microscopy with adaptive optics resulting in a very expensive, 10-foot-long microscope. From HHMI:

“It’s a bit of a Frankenstein’s monster right now,” says Betzig, who is moving to the University of California, Berkeley, in the fall. His team is working on a next-generation version that should fit on a small desk at a cost within the reach of individual labs. The first such instrument will go to Janelia’s Advanced Imaging Center, where scientists from around the world can apply to use it. Plans that scientists can use to create their own microscopes will also be made freely available. Ultimately, Betzig hopes that the adaptive optical version of the lattice microscope will be commercialized, as was the base lattice instrument before it. That could bring adaptive optics into the mainstream.

“If you really want to understand the cell in vivo, and image it with the quality possible in vitro, this is the price of admission,” he says.

More videos here.

Read the rest

These vibrant arrangements of diatoms revive a lost Victorian art

Matthew Killip directed this lovely short film about Klaus Kemp, a microscopist whose specialty had its heyday in Victorian times: arranging microscopic creatures into beautiful patterns. Read the rest

Zooming in on a tooth until you can see individual atoms

Tooth Magnified to the atomic level

It's like Powers of Ten for dentistry. Read the rest

Incredible winners of "Small World" microscope photography competition

This is the eye of a honey bee peppered with dandelion pollen, magnified at 120x.

The image, by Ralph Grimm, won Nikon's Small World 2015 Photomicrography Competition.

“In a way I feel as though this gives us a glimpse of the world through the eye of a bee,” says Grimm. “It’s a subject of great sculptural beauty, but also a warning- that we should stay connected to our planet, listen to the little creatures like bees, and find a way to protect the earth that we all call home.”

Below, the second, third, fourth, and fifth place winners.

Kristen Earle, Gabriel Billings, KC Huang & Justin Sonnenburg's "Mouse colon colonized with human microbiota (63x):"

Dr. Igor Siwanowicz's "Intake of a humped bladderwort (Utricularia gibba), a freshwater carnivorous plant (100x):"

Daniel H. Miller & Ethan S. Sokol's "Lab-grown human mammary gland organoid (100x):"

Dr. Giorgio Seano & Dr. Rakesh J. Jain's "Live imaging of perfused vasculature in a mouse brain with glioblastoma:"

Read the rest

Beautiful video inside a zebrafish embryo brain

Researchers borrowed optical techniques from astronomy and ophthalmology to dramatically improve imaging of biological samples. This video, created by scientists at the HHMI Janelia Farm Research Campus, shows neurons in the brain of a living zebrafish embryo. You can see the difference in quality when their new technique of "adaptive optics" is switched on and off.

According to physicist/engineer Eric Betzig who led the research, “The results are pretty eye-popping."

Yes. Yes they are.

(HHMI News, via National Geographic)

Read the rest

Microscopic psychedelia

Photo: Courtesy of Pat Kysar

Fast Company collects 15 beautiful photos of bizarrely-colored microscopic worlds. Read the rest

The beginning of life

Sea urchin egg undergoing mitosis with fluorescent-tagged/stained DNA (blue), microtubules (green).

Cells divide. One single piece of life tugs itself apart and splits in two. It sounds like a purely destructive process, reminiscent of medieval woodcuts where the hands and feet of some unfortunate thief are tied to horses heading in opposite directions. But that's the macro world. On the micro scale, to split is to live. A dividing cell doesn't just rip itself to pieces. Instead, the cell first makes a copy of its genetic information. When the cell splits, what it's really doing is making a new home for that copy to live in. Make enough copies—and enough copies of the copies—and you eventually end up with a living creature.

Back in May, I took part in the Marine Biological Laboratory Science Journalism Fellowship, a 10-day program that gives journalists hands-on experience in what it means to be a scientist. The program is split into two tracks. As part of the environmental track, I went to the Harvard Forest, where nature is one giant laboratory. But, at the same time, other journalists were busy in a different sort of lab.

Steven Ashley is a contributing editor at Scientific American and writes for a host of other publications. He took part in the fellowship's biomedical track. Ashley and the other journalists fertilized the eggs of sea urchins and other small ocean creatures, and then used specialized biomedical microscopes and cell imaging software to create brilliant photos and mesmerizing movies of cell division and growing animals. Read the rest

Copepod up close

This image of a tiny crustacean called a copepod is one of the winners of this year's Nikon Small World photography competition. At Deep Sea News, blogger ParaSight explains how the photographer, scientist Jan Michels, got the shot:

That right there is one gorgeous copepod, one of the bigger and more important groups of planktonic crustaceans. It looks huge but is actually tiny; probably 1-2mm. You can see how much richer and more detailed the image is (although the colour is stained flouresence, not natural). That particular image uses a technique called confocal microscopy, which uses lasers and clever optics to achieve great depth of field (where everything is in focus).

Read the rest