A simple “DNA Journey” forces people to confront their biases

Screen Shot 2016-09-04 at 5.51.51 PM

Travel site Momondo interviewed 67 people about their feelings about nationality and patriotism. They then conducted a DNA test to show them just how global the world truly is.

[via The Daily Kos] Read the rest

Thought-controlled nanorobots in your body


A team of Israeli scientists devised a system by which a person can use their thoughts alone to trigger tiny DNA-based nanorobots inside a living creature to release a drug.

Read the rest

Nobel laureate spots Turkish banknote error


The Turkish five lira note, issued in 2009, has a DNA helix. But Nobel laureate Aziz Sancar noticed that the note "shows a left-handed Z-DNA helix winding from left to right, when it should be the other way round." What Sancar doesn't know is that the monetary systems of the world are controlled by the lizard people, whose DNA is exactly like that depicted on the banknote. Read the rest

Chelsea Manning interview: DNA, big data, official secrecy, and citizenship

Artist Heather Dewey-Hagborg creates portraits from DNA samples, usually working from found samples -- chewing gum, cigarette butts -- of people she's never met. But this year, she's done a pair of extraordinary portraits of Chelsea Manning, the whistleblower currently serving a 35-year sentence in Fort Leavenworth for her role in the Wikileaks Cablegate publications.

States with the worst rape kit backlogs


The U.S. government estimates that hundreds of thousands of untested rape kits languish in police and crime lab storage facilities. The EndTheBacklog project illustrates that there's "more we do NOT know about the backlog than we do know." Read the rest

Dino-chicken creation inevitable


Entirely happy to use the word "chickenosaurus," NBC News reports that scientists are getting closer to creating a throwback creature by messing with avian DNA: "From a quantitative point of view, we're 50 percent there," a professor of paleontology told them.

The illustration is by Karl Tate of LiveScience.com Read the rest

Owner of John Lennon's tooth would like to clone the musician

Back in 2011, I posted that one of John Lennon's teeth was up for auction. Canadian dentist Michael Zuk bought the molar for approximately $34,000 and says he would eventually like to use it to clone Lennon and raise him as his own son.

"He would still be his exact duplicate but you know, hopefully keep him away from drugs and cigarettes, that kind of thing," Zuk said.

Zuk has all kinds of other plans involving the tooth, including a DNA pendant, fine art photos, a documentary film, charity fundraising... It goes on and on over at JohnLennonTooth.com. (NME) Read the rest

"Duon" is just a new name for something we already knew about

Over the last couple of days, you might have heard about the "duon" — a "second" genetic code that's being hyped as a radical new "breakthrough" in science.

Based solely on the number of words I've put in quotations here, you can probably guess that the actual news doesn't really match the hype. Read the rest

Patent life: how the Supreme Court fell short

You can't patent the building blocks of life, but you can patent a type of synthetic DNA that contains all the same information. Maggie Koerth-Baker explains how the Justices misunderstood the science and the effect that their verdict could have on future research.

Analyzing the Bigfoot genome

Back in February, a Texas forensic scientist announced that she'd identified a DNA sample from Bigfoot and had sequenced the creature's genome. Now the sequences have been released for wider scrutiny and Ars Technica's John Timmer had a chance to dig into the data and speak with the discoverer of the possible Bigfoot genome. This is a story that, I think, everybody can enjoy — a skeptical analysis that's respectful to the Bigfoot researchers and genuinely interested in understanding where the DNA in question came from and what the genome sequences can tell us. Read the rest

The oldest genome ever sequenced

Scientists at the University of Copenhagen sequenced the oldest genome yet — 700,000-year-old DNA from an ancient ancestor of the horse. The Nature Podcast explains why doing this is valuable (and, no, it's not about creating a cloned ancient horse park) and how you go about sequencing such elderly, and thus degraded, DNA. Read the rest

Making sense of the confusing Supreme Court DNA patent ruling

Nine people who have not recently made any sweeping judgements about biotechnology.

Last week, I told you about the US Supreme Court ruling that made it illegal to patent naturally occurring DNA. In that article, I talked briefly about the fact that the new ruling doesn't cover all DNA. It's still perfectly legal to patent synthetic DNA, and the court documents referred specifically to complementary DNA (aka cDNA).

This is where things get murky. Complementary DNA is a thing that can be both natural and synthetic. And, as a laboratory creation, it's an important step in a common method of replicating naturally occurring DNA. All of which leaves some holes in the idea that the Supreme Court ruling is a simple "win" for open-access science, patent activists, and patients. After all, if you can't patent a gene, but you can patent the laboratory copy of the gene, what's that mean? It's sort of like not being able to patent a novel, but being able to patent a copy of its contents that's had all the white space removed. It seems like everybody is a bit confused by this. So I wanted to take a moment to at least clarify what cDNA is and what some people, on different sides of the science/law/biotech divides, are thinking about it.

It starts with some stuff you learned back in junior high — how information from your DNA gets turned into actual working proteins. Read the rest

The bones of Richard III (or, possibly, someone else entirely)

Before you get excited about the bones of Richard III being found under a parking lot, consider this — the announcement included no mention of how common the DNA sequences that ostensibly identified the body as Richard really are. Those sequences might match Richard's descendants, but if the sequences are also really common, well, that's not saying much. Read the rest

DNA for data storage

Researchers have successfully stored information in synthetic DNA and then sequenced the DNA to read the data. Nick Goldman and his colleagues from the European Bioinformatics Institute (EBI) encoded all of Shakespeare's sonnets, an audio clip of Martin Luther King's "I have a dream" speech, Watson and Crick's paper on DNA's structure, a photo of the EBI, and an explanation of their data conversion technique. Last year, Harvard molecular geneticist George Church encoded a book he had written in DNA, but EBI's breakthroughs are in the way the data is encoded and its error-correction. From the abstract of their scientific paper published at Nature:
We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information10 of 5.2 × 106 bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade.
"Synthetic double-helix faithfully stores Shakespeare's sonnets" (Thanks, Mike Pescovitz!) Read the rest

The Turn of the Screw: James Watson on The Double Helix and his changing view of Rosalind Franklin

An interview with the co-discoverer of the structure of DNA.

We have the technology to look for life on Mars

The Curiosity rover can do a lot of things, but nobody is expecting her to find direct evidence of life on Mars. In fact, the hunt for life on the Red Planet has been a pretty stunted one. The last time we really looked was during the Viking missions, which tried to find chemical "footprints" that would exist if there had once been life on Mars, but that could end up on that planet for other reasons, as well. What we got back was a less-than-enthralling "Outlook Hazy. Try Again Later."

Ever since, we've contented ourselves with searching for indirect evidence — assessing the planet for signs that it might once have had the conditions necessary for life to happen. That's important, and it will make direct evidence of life more believable if we ever do find it, but it's not quite the same thing.

But now, DNA sequencing tools have become portable enough (and drilling technology has become powerful enough) that some scientists and Craig Ventner think we could send a probe to Mars which could find buried traces of actual DNA protected in the dirt and sequence that DNA on site.

It's also possible that life hitched a ride between Earth and Mars in their early days. Asteroid impacts have sent about a billion tonnes of rock careering between the two planets, potentially carrying DNA or its building blocks. That could mean that any genetic material on Mars is similar enough to DNA that we have a chance of finding it using standard tests.

Read the rest

Study raises new concerns about safety of genetically modified food

A study at Nanjing University in China found that ingested "microRNA" (very small pieces of ribonucleic acid, or RNA) from plants were able to survive digestion and influence the function of human cells.

Food columnist Ari Levaux has a piece digging into the implications, in The Atlantic. The basic idea: if this research stands up to the rigors of scientific scrutiny, it could prove that when we eat food, we consume not just fuel and nutrients, but information that changes us on a cellular level, and influences health.


Monsanto's website states, "There is no need for, or value in testing the safety of GM foods in humans." This viewpoint, while good for business, is built on an understanding of genetics circa 1950. It follows what's called the "Central Dogma" (PDF) of genetics, which postulates a one-way chain of command between DNA and the cells DNA governs.

The Central Dogma resembles the process of ordering a pizza. The DNA knows what kind of pizza it wants, and orders it. The RNA is the order slip, which communicates the specifics of the pizza to the cook. The finished and delivered pizza is analogous to the protein that DNA codes for.

We've known for years that the Central Dogma, though basically correct, is overly simplistic. For example: Pieces of microRNA that don't code for anything, pizza or otherwise, can travel among cells and influence their activities in many other ways. So while the DNA is ordering pizza, it's also bombarding the pizzeria with unrelated RNA messages that can cancel a cheese delivery, pay the dishwasher nine million dollars, or email the secret sauce recipe to WikiLeaks.

Read the rest

More posts