Garbage In, Garbage Out: machine learning has not repealed the iron law of computer science

Pete Warden writes convincingly about computer scientists' focus on improving machine learning algorithms, to the exclusion of improving the training data that the algorithms interpret, and how that focus has slowed the progress of machine learning. Read the rest

AI's blind spot: garbage in, garbage out

Social scientist Kate Crawford (previously) and legal scholar Ryan Calo (previously) helped organize the interdisciplinary White House AI Now summits on how AI could increase inequality, erode accountability, and lead us into temptation and what to do about it. Read the rest

Rules for trusting "black boxes" in algorithmic control systems

Tim O'Reilly writes about the reality that more and more of our lives -- including whether you end up seeing this very sentence! -- is in the hands of "black boxes": algorithmic decision-makers whose inner workings are a secret from the people they affect. Read the rest

Sampling bias: how a machine-learning beauty contest awarded nearly all prizes to whites

If you've read Cathy O'Neil's Weapons of Math Destruction (you should, right NOW), then you know that machine learning can be a way to apply a deadly, nearly irrefutable veneer of objectivity to our worst, most biased practices. Read the rest

Weapons of Math Destruction: invisible, ubiquitous algorithms are ruining millions of lives

I've been writing about the work of Cathy "Mathbabe" O'Neil for years: she's a radical data-scientist with a Harvard PhD in mathematics, who coined the term "Weapons of Math Destruction" to describe the ways that sloppy statistical modeling is punishing millions of people every day, and in more and more cases, destroying lives. Today, O'Neil brings her argument to print, with a fantastic, plainspoken, call to arms called (what else?) Weapons of Math Destruction.

Big Data Ethics: racially biased training data versus machine learning

Writing in Slate, Cathy "Weapons of Math Destruction" O'Neill, a skeptical data-scientist, describes the ways that Big Data intersects with ethical considerations. Read the rest