Tim Chartier, an Associate Professor of Mathematics at Davidson College, has a series of ingenious and delicious methods for illustrating fundamental concepts from calculus using chocolates. I had a brilliant calculus teacher, Alvin Anson, but I think a little chocolate would have improved even his techniques:

Where’s the chocolate? Rather than shading a square, we will place a milk chocolate chip on a square we would have colored red and a white chocolate chip on a region that would have been white. To begin, the six by six grid on the left becomes the chocolate chip mosaic we see on the right, which uses 14 white chocolate of the total 36 chips. So, our estimate of π is 2.4444. We are off by about 0.697.
Next, we move to an 11 by 11 grid of chocolate chips. If you count carefully, we use 83 milk chocolate chips of the 121 total. This gives us an estimate of 2.7438 for π, which correlates to an error of about 0.378.

Finally, with the help of public school teachers in my seminar Math through Popular Culture for the Charlotte Teachers Institute, we placed chocolate chips on a 54 by 54 grid. In the end, we used 2232 milk chocolate chips giving an estimate of 3.0617 having an error of 0.0799.

(*via Neatorama*)

report this ad

Berlin’s Raubdruckerin (“Pirate Printer”) roam the world’s great cities — places like Paris, Amsterdam and Lisbon — and apply ink-rollers directly to the prettiest manhole and utility covers they can find, then print tees, hoodies, posters and bags to sell with them.

Telecomunicaciones Indígenas Comunitarias A.C. — a nonprofit telcoms company operated by and for indigenous groups in Chiapas, Guerrero, Oaxaca, Puebla, and Veracruz — has received a license to operate cellular services in at least 356 municipalities. It’s the first time the Mexican telcoms regulator has given a operations license to an indigenous social group.

5 Worlds is a young SFF project that’s been a hard secret to keep these past years! It’s a five book series, 250 pages each, full color. It has five worlds and there are five of us working together on it. The story involves an impossible quest to light these ancient beacons left behind by […]

It’s one thing to enjoy dinner at home and a nice glass of Cabernet Sauvignon with your best friend, Netflix, but it’s another thing entirely to make that meal from scratch and get that wine delivered right to your doorstep.But what if we told you there’s a way to make this possible? To keep your social life, […]

Having to pack and drag your stuff through security can put quite the damper on your vacation plans. Thankfully, we’ve got your back with one way to make traveling more painless: the Jumper Overnighter Travel Bag.This compact bag is so lightweight that you can effortlessly carry it, and fit it into any overhead compartment. But just […]

Learning is a 24/7/365 proposition, and it never ends. And if you’re truly serious about leveling up your skill sets and career prospects, get a subscription to Stone River Academy’s massive course collection. This offer normally is worth over $1,400, but is now available for just $89 in the Boing Boing Store.A respected name in information technology […]

report this ad

Seems more like an example of the monte carlo method to me…

it’s not monte carlo since it’s not random. the phrase you’re looking for is “discrete approximation”.

as a surly academic, i want to hate this, but i really can’t. it’s a decent demonstration of taking limits and it would probably get some attention which otherwise would have been dissipated. if you had a lot of time and chocolates of various sizes, you could even hint at fractal dimension.

Personally, I don’t like the definition that a square with ANY part of the curve is given to white chocolate. I feel that the dark chocolate should have those. Yes, I am in favor of Manifest Destiny, but ONLY for dark chocolate.

Your next assignment is to use thousands of little tablets to find the value of

e.Oh no, that chocolate would never remain on the board unmolested long enough to work out any calculus problems. ‘Where’s the chocolate?’ Indeed.

what a delicious way to teach.

Ah, the days when we used to learn the chain rule with peanut M&Ms.

Wow…

Connect Four looks much more complicated here than how I remember it as a kid.

It is cute, but it isn’t calculus. I can’t think of a good use of chocolate for teaching calculus, except as an incentive. However, this chocolate idea is great for teaching both geometry and algebra. You can derive formulas for the areas of various geometric shapes such as squares, rectangles, rhombi, trapezoids, and triangles using chocolate chips. If you are brave you could derive formulas for some 3D shapes such as pyramids. You can also derive algebraic formulas such as the sum of the first k integers equals k(k+1)/2 and x^2-1=(x+1)(x-1) by rearranging chocolate chips. There is a wonderful book called “Proofs Without Words” available from the American Math Association. Many of its proofs could be done with chocolate.

–CAT

man this trumps domino computing

I tried this method out, but I seem to encounter an error whereby my

calculations are increasingly off by about 1 every 30 seconds.

*munch*munch*

Wonder why that is?

*munch*munch*

When you think of the other definition of calculus, this is pretty damned funny.

The approximation would be much more accurate if we counted the tiles that have an apparent majority of their area inside the curve.