Humans have a sixth sense for Earth's magnetic field

A new study suggests that humans can subconsciously sense Earth's magnetic field. While this capability, called magnetoreception, is well known in birds and fish, there is now evidence that our brains are also sensitive to magnetic fields. The researchers from Caltech and the University of Tokyo measured the brainwaves of 26 participants who were exposed to magnetic fields that could be manipulated. Interestingly, the brainwaves were not affected by upward-pointing fields. From Science News:

Participants in this study, who all hailed from the Northern Hemisphere, should perceive downward-pointing magnetic fields as natural, whereas upward fields would constitute an anomaly, the researchers argue. Magnetoreceptive animals are known to shut off their internal compasses when encountering weird fields, such as those caused by lightning, which might lead the animals astray. Northern-born humans may similarly take their magnetic sense “offline” when faced with strange, upward-pointing fields...

Even accounting for which magnetic changes the brain picks up, researchers still don’t know what our minds might use that information for, (Caltech neurobiologist and geophysicist Joseph) Kirschvink says. Another lingering mystery is how, exactly, our brains detect Earth’s magnetic field. According to the researchers, the brain wave patterns uncovered in this study may be explained by sensory cells containing a magnetic mineral called magnetite, which has been found in magnetoreceptive trout as well as in the human brain.

"Transduction of the Geomagnetic Field as Evidenced from Alpha-band Activity in the Human Brain" (eNeuro)

"Evidence for a Human Geomagnetic Sense" (Caltech) Read the rest

Where does consciousness come from?

"Consciousness is what allows us to be aware of both our surroundings and our own inner state." In the first of a three part video series, "Kruzgesagt - In a Nutshell" examines "how unaware things come aware." Stay tuned for theories of consciousness that of course may be as much about philosophy as they are neuroscience.

Sources here.

Read the rest

Scientific tips on how to cram for an exam

ASAP Science provides some excellent tips for intensive, last-minute studying of just about any subject where you need to remember a lot of information. The video covers a lot of ground, from memory palaces and cortisol to metacognition to other things I can't remember because I didn't study enough.

Read the rest

Brain-zapping implants that change mood and lift depression

Teams of researchers are developing sesame seed-size neuro-implants that detect brain activity that signals depression and then deliver targeted electrical zaps to elevate your mood. It's very early days in the science and technology but recent studies suggest that we're on the path. Links to scientific papers below. Fortunately, the goal is to develop tools and a methodology more precise than the horrifically blunt "shock therapy" of last century. From Science News:

DARPA, a Department of Defense research agency, is funding (Massachusetts General Hospital's research on new brain stimulation methods) plus work at UCLA on targeted brain stimulation. Now in its fifth and final year, the (DARPA) project, called SUBNETS, aims to help veterans with major depression, post-traumatic stress, anxiety and other psychiatric problems. “It is extremely frustrating for patients to not know why they feel the way they do and to not be able to correct it,” Justin Sanchez, the director of DARPA’s Biological Technologies Office, said in a Nov. 30 statement. “We owe them and their families better options.”

These next-generation systems, primarily being developed at UCSF and Massachusetts General Hospital, might ultimately deliver. After detecting altered brain activity that signals a looming problem, these devices, called closed-loop stimulators, would intervene electrically with what their inventors hope is surgical precision.

In contrast to the UCSF group, Widge, who is at the University of Minnesota in Minneapolis, and his collaborators don’t focus explicitly on mood. The researchers want to avoid categorical diagnoses such as depression, which they argue can be imprecise.

Read the rest

The neuroscience of creativity (and yes, right brain/left brain is mostly bullshit)

Anna Abraham literally wrote the book on creativity and the brain. The Leeds Beckett University psychology professor is the author of a new textbook titled The Neuroscience of Creativity. From an interview with Abraham by psychologist Scott Barry Kaufman in Scientific American:

SBK: Why does the myth of the “creative right brain” still persist? Is there any truth at all to this myth?

AA: Like most persistent myths, even if some seed of truth was associated with the initial development of the idea, the claim so stated amounts to a lazy generalization and is incorrect. The brain’s right hemisphere is not a separate organ whose workings can be regarded in isolation from that of the left hemisphere in most human beings. It is also incorrect to conclude that the left brain is uncreative. In fact even the earliest scholars who explored the brain lateralization in relation to creativity emphasized the importance of both hemispheres. Indeed this is what was held to be unique about creativity compared to other highly lateralized psychological functions. In an era which saw the uncovering of the dominant involvement of one hemisphere over the other for many functions, and the left hemisphere received preeminent status for its crucial role in complex functions like language, a push against the tide by emphasizing the need to also recognize the importance of the right hemisphere for complex functions like creativity somehow got translated over time into the only ‘creative right brain’ meme. It is the sort of thing that routinely happens when crafting accessible sound bites to convey scientific findings.

Read the rest

Wonderful video of teen with Tourette's cooking an omelette

Ryleigh is a teenager with Tourette Syndrome who makes absolutely wonderful videos like the one below that she hopes will "spread awareness about Tourettes as well as joy and laughter." See more of her clips at Tourettes Teen!

Read the rest

Watch this journalist uncover how games mess with his brain

There's a lot of text out about how, for better or worse, playing computer games will mess with your brains. Instead of adding to the pile of words already scrawled on the subject, WIRED's Peter Rubin took it upon himself to work up a video that examines how gaming messes with his brain in particular. Read the rest

How to tell if a comatose patient is actually conscious

Neurologist Steven Laureys is an expert on the mysteries of consciousness. A researcher and clinician at the Belgian National Fund of Scientific Research he's known for testing comatose patients for any hidden signs of consciousness. From Scientific American's interview with Laureys:

So how is it possible to study something as complex as consciousness?

There are a number of ways to go about it, and the technology we have at our disposal is crucial in this regard. For example, without brain scanners we would know much, much less than we now do. We study the damaged brains of people who have at least partially lost consciousness. We examine what happens during deep sleep, when people temporarily lose consciousness. We’ve also been working with Buddhist monks because we know that meditation can trigger alterations in the brain; connections that are important in the networks involved in consciousness show changes in activity. Hypnosis and anesthesia can also teach us a great deal about consciousness. In Lige, surgeons routinely operate on patients under hypnosis ( including Queen Fabiola of Belgium). Just as under anesthesia, the connections between certain brain areas are less active under hypnosis. And finally, we are curious to understand what near-death experiences can tell us about consciousness. What does it mean that some people feel they are leaving their bodies, whereas others suddenly feel elated?

Patients are brought to Lige from all over Europe to undergo testing. How do you determine whether they are conscious?

Well, of course, the physician will say, “Squeeze my hand”—but this time while the patient is in a brain scanner.

Read the rest

Lightning knocks out woman's brain implant

Deep brain stimulators -- pacemaker-like implants that deliver electrical impulses to specific regions in the brain -- are common treatments for Parkinson's and other neurological disorders. It's known that strong electromagnetic fields from the likes of ham radio antennae and arc welders can damage the devices. Now, researchers report the case of a 66-year-old woman whose deep brain stimulator was knocked out when lightning hit her apartment. Fortunately, the lightning shut off the device without damaging her brain.

“The patient was not charging the battery of her IPG (implantable pulse generator) during the event, and the recharger for the IPG was disconnected from the power supply during the storm," the researchers wrote. "The recharger and IPG were therefore not destroyed. The patient realized that something was wrong only 1 hour after the storm subsided, when the dystonic tremor in her neck reappeared.”

"Lightning may pose a danger to patients receiving deep brain stimulation: case report" (Journal of Neuroscience via Mysterious Universe) Read the rest

Woman plays flute while undergoing brain surgery

Musician Anna Henry suffered from essential tremor, a movement disorder that causes shaky hands. As the conditioned worsened, it interfered with her flute playing. So she underwent a surgical procedure called deep brain stimulation to cure it. The Texas Medical Center surgeons implanted a battery pack in her chest that delivers tiny voltages to the brain's thalamus, a key region responsible for controlling movement. She was kept awake during the operation, a common practice to test the device and avoid brain damage. The procedure worked. From the Texas Medical Center:

The result was like flipping a switch. Prior to the surgery, Henry’s neurologist, Mya Schiess, M.D., of the Mischer Neuroscience Institute at Memorial Hermann-Texas Medical Center and UTHealth, ran a few motor control tests. Henry could barely sign her name, let alone hold a pen. When handed a cup of water, her hand shook so intensely that the water splashed inside the cup.

But after the electrodes were placed in her brain and the thalamus was stimulated, Henry’s hand was still and stable, without a single detectable tremor. When she signed her name a second time, each pen stroke was smooth and clean. Her handwriting was legible for the first time in decades.

The surgical team handed Henry her flute to test if her hands were stable enough to play. As she remained on the operating bed, she lifted her flute to her mouth and treated everyone in the operating room not only to a sweet melody, but the joy of seeing her tremor disappear.

Read the rest

This startup promises to preserve your brain for uploading, after they kill you

“What if we told you we could back up your mind?” asks start-up Netcome. According to MIT grad and co-founder Robert McIntyre, he has state-of-the-art technology to preserve your brain in a near-perfect state for scanning in the future once that technology is invented. Thing is, they have to start the preservation process while you're still alive. They're pitching the company at Y-Combinator's "demo daysnext week. Already 25 people have signed up on the waiting list. From Antonio Regalado's feature in Technology Review:

The brain storage business is not new. In Arizona, the Alcor Life Extension Foundation holds more than 150 bodies and heads in liquid nitrogen, including those of baseball great Ted Williams. But there’s dispute over whether such cryonic techniques damage the brain, perhaps beyond repair.

So starting several years ago, McIntyre, then working with cryobiologist Greg Fahy at a company named 21st Century Medicine, developed a different method, which combines embalming with cryonics. It proved effective at preserving an entire brain to the nanometer level, including the connectome—the web of synapses that connect neurons.

A connectome map could be the basis for re-creating a particular person’s consciousness, believes Ken Hayworth, a neuroscientist who is president of the Brain Preservation Foundation—the organization that, on March 13, recognized McIntyre and Fahy’s work with the prize for preserving the pig brain.

There’s no expectation here that the preserved tissue can be actually brought back to life, as is the hope with Alcor-style cryonics. Instead, the idea is to retrieve information that’s present in the brain’s anatomical layout and molecular details.

Read the rest

Huge air bubble discovered in otherwise healthy dude's head

Brains are so overrated. Sure, they let us know when it's time to poop and help us to find our car keys, but that's not very impressive for an organ that takes up just about all of the space in a skull. You could totally get away with a smaller brain just fine. Check it out: according to The Washington Post, a seemingly healthy fella was found to have a 3.5" air bubble in his skull where a good chunk of his grey matter should be and he was still walking around, eating sandwiches and everything.

The 84-year-old gentleman's missing brains were discovered after he complained of taking frequent falls and a loss of sensation on one side of his body – symptoms commonly associated with a stroke. When he reported to the emergency room to get checked out, the ER doctors were gobsmacked to discover that their patient had a massive, pressurized air bubble – called a pneumatocoele – in his skull where brains should have been.

The empty head space was particularly surprising because the man arrived in the emergency department with afflictions otherwise common for his age. He had been complaining to his regular doctor about repeated falls and feeling unsteady in recent months. When the man added left-sided arm and leg weakness to the list of complaints, his doctor advised him to go to the emergency room, fearing a possible stroke.

But aside from the weakness and unsteadiness, the man was in good shape. In the case report, doctors noted that “there was no confusion, facial weakness, visual or speech disturbance… He was otherwise fit and well, independent with physical activities of daily living (PADLs) and lived at home with his wife and two sons.

Read the rest

The ethics of upgrading your brain with implants

Computational neuroscientist Anders Sanberg is a senior research fellow at Oxford’s Future of Humanity Institute where he explores the ethics of future human enhancement through AI, genetic engineering, and brain implants. IEEE Spectrum's Eliza Strickland interviewed Sanberg about the ethics of augmenting your wetware with neurotech:

Spectrum: Do you worry that neurotech brain enhancements will only be available to the wealthy, and will increase the disparities between the haves and have-nots?

Sandberg: I’m not too worried about it. If the enhancement it is in the form of a device or pill, those things typically come down in price exponentially. We don’t have to worry so much about them being too expensive for the mass market. It’s more of a concern if there is a lot of service required—if you have to go to a special place and get your brain massaged, or you have to take a few weeks off work for training, the prices for those services won’t come down because they’re based on salaries. The real question is, how much benefit do you get from being enhanced? You have to consider positional benefits versus absolute benefits. For example, being tall is positionally good for men, tall men tend to get ahead in work and have better life outcomes. But if everyone becomes taller, no one is taller. You only get the benefit if you’re taller than everyone else. Many people who are against enhancement use this argument: Enhancement leads to this crazy race and we’re all worse off.

Spectrum: So even if a cognition-enhancing device became available, you don’t think everyone should get one?

Read the rest

Thinking is a group activity

Most of us vastly overestimate our understanding of how things work. We think we know more than we do. Why? Because we get by with a little help from our friends. (Sorry.) Cognitive scientists Steven Sloman and Philip Fernbach explore why we think we're so smart in a new book titled The Knowledge Illusion: Why We Never Think Alone. Over at Scientific American, Gareth Cook interviews Sloman about how thinking turns out to be more of a community activity.


People fail to distinguish the knowledge that’s in their own heads from knowledge elsewhere (in their bodies, in the world, and—especially—in others’ heads). And we fail because whether or not knowledge is in our heads usually doesn’t matter. What matters is that we have access to the knowledge. In other words, the knowledge we use resides in the community. We participate in a community of knowledge. Thinking isn’t done by individuals; it is done by communities. This is true at macro levels: Fundamental values and beliefs that define our social, political, and spiritual identities are determined by our cultural communities. It is also true at the micro-level: We are natural collaborators, cognitive team-players. We think in tandem with others using our unique ability to share intentionality.

Individuals are rarely well-described as rational processors of information. Rather, we usually just channel our communities.

The Knowledge Illusion: Why We Never Think Alone (Amazon) Read the rest

San Francisco Giants are zapping their brains to improve performance

Members of the San Francisco Giants are using transcranial direct current stimulation (tDCS) in an effort to improve their performance on the field. According to SF Giants sports scientist Geoff Head (real name!), "some big-name players" are using the Halo Sport device, resembling Beats headphones, to deliver a small amount of current to the wearer's motor cortex. From KQED:

Head decided to try the headset, called Halo Sport, during spring training last year—he gave them to some minor leaguers to wear as they sprinted 20-yard dashes. After two weeks, Head analyzed the results and found that the players who wore the equipment had shaved off a few one-hundredths of a second compared to a control group....

Even though a lot of the data is conflicting, the most positive results do support using tDCS to improve motor control. Hence the slew of startups targeting athletes.

The Giants’ Head says even a tiny advantage can help win games at the major league level. An improvement of two-hundredths of a second can be “the difference between safe and out sometimes,” he says.

"The SF Giants Are Zapping Their Brains With Electricity. Will It Help?" (KQED) Read the rest

Open source interface to connect your brain to your computer

Most of us need a computer interface implanted in our brains like we need a hole in our head. That said, there are benefits to bridging the gap between mind and machine. Joel Murphy is the founder of OpenBCI, an inexpensive, and non-invasive, brain-computer interface (BCI) platform. People have used OpenBCI to control robots, compose music by thinking about it, develop games, and help individuals who are "locked in" and can't control their bodies communicate with the outside world. Mark Frauenfelder and I interviewed Joel about open source, DIY neurotech in this episode of For Future Reference, a new podcast from Institute for the Future:

Please subscribe to For Future Reference: iTunes, RSS, Soundcloud Read the rest

Brain implant allows paralyzed monkey to walk

Researchers at the Swiss Federal Institute of Technology in Lausanne have developed a neuroprosthetic interface that creates a wireless link between the brain and the spine. In a recent experiment, they used it to enable a paralyzed monkey to walk.

Via Healthglu:

The brain-spine interface overcomes a damaged connection by bridging the spinal cord injury — and it does so in real-time and via wireless technology. The neuroprosthetic device implanted in the monkey’s brain correctly interprets activity generated by the motor cortex, and relays this information to a system of electrodes placed over the surface of the spinal cord, just below the injury. A burst of just a few volts, delivered at the right location, triggers specific muscles in the legs. Monkeys implanted with the device were able to walk within six days of the spinal cord injury.

Read the rest

More posts