Submit a link Features Reviews Podcasts Video Forums More ▾

F&*#ing Internet, how does it work?

For the next 60 years or so—basically, until everyone roughly my age has died off—former Alaskan senator Ted Stevens will be widely remembered (and mocked) for once describing the Internet as "a series of tubes".

But here's the thing. It's easy to make fun of Ted Stevens. It's harder (much harder) to explain quickly and at a relatively simple level—for lay people with no tech background—what actually happens when they call up a web page.

That's why Greg Boustead and the nice folks at the World Science Festival put together this short video, explaining the basics of the Internet, specifically the basics of packet switching. The video should help the average person understand the Internet just a little better and it has been run by several experts for accuracy, Boustead says.

I have to admit that when I had to screen it for "father of the Internet" Vint Cerf, who invented this process, I was more than a little nervous, certain he would pick it apart. When he replied with "This is so good - can I please use it to explain the concept of packets at public lectures," needless to say, I was over the moon.

So, the Internet. It's not a big truck. It's not a series of tubes. It's more like a bus full of tourists.

Video Link

Why did our species survive?

Today, we're the only living member of the genus Homo and the only living member of the subtribe Hominina. Along with chimpanzees and bonobos, we're all that remains of the tribe Hominini.

But the fossil record tells us that wasn't always the case. There were, for instance, at least eight other species of Homo running around this planet at one time. So what happened to them? What makes us so special that we're still here? And isn't it just a little weird and meta to be fretting about this? I mean, do lions and tigers spend a lot of time pondering the fate of the Smilodon?

Today, starting at 12:00 Eastern, you can watch as a panel of scientists tackle these and other questions. "Why We Prevailed" is part of the World Science Festival and features anthropologist Alison Brooks, genome biologist Ed Green, paleoanthropologist Chris Stringer (one of the key researchers behind the "Out of Africa" theory), and renowned evolutionary biologist Edward O. Wilson.

You can also join in a live conversation about the panel, which I'll be hosting. Just post to Twitter with hashtag #prevail, or join us at UStream.

What's quantum physics got to do with biology?

Photosynthesis allows plants to convert light from the Sun into energy, and, in some cases, it does this incredibly well. In fact, certain bacteria can capture 95% of the light that hits them and turn it into useful energy.

Solar panels also convert light from the Sun into energy—but they aren't nearly as good at it. The very best solar panels ever tested in a lab (i.e., not the ones actually available for sale and installation on your house) were able to convert about 34% of the light that hit them into electricity. (Individual experimental solar cells can do better than that. But those are even further away from being incorporated into commercially available panels.)

Why can't we use the Sun's energy as effectively as bacteria can? The secret may be that the bacteria are using quantum physics to transmit energy. It's sort of like the bacteria have a method for keeping boxes of energy from falling off the truck during transport.

Read the rest